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Partial Orders

Let P be a set. A binary relation < on P is a partial order iff it is:
reflexive: (Vx € P)x < x
transitive: (Vx,y,z€ P)x<yAy<z = x<z
antisymmetric: (Vx,y E P)x <y Ay <x = x=y

An element L with L < x for all x € P is called bottom element. It is
unique. Analogously, T is called top element, if T > x for all x € P.



Duality

Let P an ordered set. The dual PP of P is obtained by defining x < y in
PP whenever y < x in P.

For every statement ® about P there is a dual statement ®2 about PP. It
is obtained from P by exchanging < by >.

If ® is true for all ordered sets, ®P is also true for all ordered sets.



Hasse Diagrams

—,0,+}
A partial order (P, <) is typically visualized by a / ‘ \

Hasse diagram:
o {=0} {—+} {0,+}
m Elements of P are points in the plane

m If x < z, then z is drawn above x.

— 0 +
m If x < z, and there is no y with x < y < z, {0} {+}
then x and z are connected by a line \ ‘ /

The Hasse diagram of the dual of P is obtained by “turning” the one of P
by 180°



Upper and Lower Bounds

Let (P, <) be a partial ordered set and let S C P. An element x € P is a
lower bound of S, if x < s forall s€ S. Let

St={xeP|(VseS)x <s}
be the set of all lower bounds of the set S. Dually:

SY={xeP|(VseS)x>s}
Note: 4 = (¢ = P.

If S¢ has a greatest element, this element is called the greatest lower
bound and is written inf S. (Dually for least upper bound and sup S.) The
greatest lower bound only exists, iff there is a x € P such that

(Vy e P)(((Vse€S)s2y) < x=vy)



Complete Partial Orders

A non-empty subset S C P is directed if for every x,y € S thereisz€ S
such that z € {x, y}".

P is a complete partial order (CPO) if every directed set M has a least
upper bound.

We use the notation | | M to indicate the least upper bound of a directed
set.



Lattices

The order-theoretic definition

Let P be an ordered set.

m If sup{x, y} and inf{x, y} exist for every pair x,y € P
then P is called a lattice.

m If for every S C P, sup S and inf S exist,
then P is called a complete lattice.



The Connecting Lemma

Let L be a lattice and let a, b € L. The following statements are equivalent:
a<hb
inf{a, b} = a
sup{a, b} = b



Lattices

The algebraic definition

We now view L as an algebraic structure (L; V, A) with two binary

operators

xVy = sup{x,y}

Theorem: V and A satisfy for all a, b, c € L:

(L1)
(L1)”
(L2)
(L2)"
(L3)
(L3)"
(L4)
(L4)"

(avb)Vc=aVv(bVc)
(anb)ANc=aA(bAc)

avb=bVa
aANb=bAa
aVa=a
aNa=a
avV(anb)=a

aN(avb)=a

XNy .=

inf{x,y}

associativity
commutativity
idempotency

absorption
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We now view L as an algebraic structure (L; V, A) with two binary
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XNy .=

inf{x,y}

associativity
commutativity
idempotency

absorption

Proof: (L2) is immediate because sup{x,y} = sup{y, x}. (L3), (L4) follow
from the connection lemma. (L1) exercise. The dual laws come by duality.



Lattices

From the algebraic to the order-theoretic definition

Let (L; vV, A) be a set with two operators satisfying
(L1)—(L4) and (L1)P—(14)P

Theorem:
Define a< bon Lif av b= b. Then, < is a partial oder
(L; <) is a lattice with

sup{a,b} =aVvb and inf{a,b}=aAb
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Lattices

From the algebraic to the order-theoretic definition

Let (L; vV, A) be a set with two operators satisfying

(L1)—(L4) and (L1)P—(14)P

Theorem:
Define a< bon Lif av b= b. Then, < is a partial oder
(L; <) is a lattice with

sup{a,b} =aVvb and inf{a,b}=aAb

Proof:

reflexive by (L3), antisymmetric by (L2), transitive by (L1)
First show that aV b € {a, b}" then show that
d € {a,b}" = (aV b) < d. Easy by applying the (L/) to the
suitable premises (Exercise).
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Functions on Partial Orders

Let P be a partial order. A function f : P — P is

m monotone if for all x,y € P:
x<y = f(x) < f(y)

m continuous if for each directed subset M C L:

F(Lm) =] |F(m)

Lemma: Continous functions are monotone.
Proof: Exercise
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Knaster-Tarski Fixpoint Theorem

Let L be a complete lattice and f : L — L be monotone. Then

N{xeL]f(x)<x}

is the least fixpoint of f. (The dual holds analogously.)
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Knaster-Tarski Fixpoint Theorem

Let L be a complete lattice and f : L — L be monotone. Then

N{xeL]f(x)<x}

is the least fixpoint of f. (The dual holds analogously.)

Proof: Let R := {x € L| f(x) < x} be the set of elements of which f is
reductive. Let x € R. Consider z = /\ R. z exists, because L is complete.
z < x because z is a lower bound of x. By monotonicity, f(z) < f(x).
Because x € R, f(z) < x. Thus, f(z) is also a lower bound of R. Thus,
f(z) <y for all y € R. Because z is the greatest lower bound of R,

f(z) < z, thus z € R. By monotonicity, f(f(z)) < f(z). Hence, f(z) € R.
Because z is a lower bound of R, z < f(z) and z = f(z).



Finite Lattices Are Complete

Associativity allows us to write sequences of joins unambiguously without
brackets. One can show (by induction) that

\/{al,...,an}:al\/~-\/an

for {a1,...,an} € L, n > 2. Thus, for any finite, non-empty subset F € L,

V and A\ exist.

Thus, every finite lattice bounded (has a greatest and least element) with

T=\L 1=AL

Finally, becuase finite lattices have L (T), it exists \/ 0 (A 0):

L=\o T=A0

Hence, finite lattices are complete.
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Fixpoint by Iteration (Kleene)

Let L be a complete lattice, f : L — L a monotone function,
and o =[5 f'(L).
If « is a fixpoint, it is the least fixpoint.

If f is continuous, « is a fixpoint.
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Fixpoint by Iteration (Kleene)

Let L be a complete lattice, f : L — L a monotone function,
and o =[5 f'(L).
If « is a fixpoint, it is the least fixpoint.

If f is continuous, « is a fixpoint.

Proof: First, o exists because L is a lattice.

Assume (3 = f(f3) is a fixpoint of f. By definition, L. < /3 and
because f is monotone, for all i: f/(L) < f/(8) = 3. Hence, 3 is an
upper bound on M = {1 f(L),...}. Because « is the least upper
bound of M, we have o < 3. Hence, if « is a fixpoint, it is the least.

fla) =f(Ui>o fi(L)) = Li>o f(fi(J_)) f continuous
Lis1 /(L)

Lliso f'(L)  because Vi.L < f/(L)
(0%

Remark: The theorem also holds for complete partial orders in which only every ascending chain
must have a least upper bound.
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Fixpoints in Complete Lattices
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