
The paper presents an algorithm which makes use of two core
techniques for dealing with data dependencies while parallelising an
input program: privatization and sequencing.
Privatization means that for each variable, which is affected by
race conditions between different threads of the program, a private
copy is allocated. This private copy doesn’t suffer the race-time
condition anymore, since at most one thread has concurrent access to
it. What makes privatization difficult is the fact, that private
variables, which are used in a block, might have to copy-in the
value assigned to in a prior block (with respect to the control-
flow-graph) or have to copy-out the value for use in a post block.
This especially hard for parallel loops, because the presented
approach uses statically (or syntactically) analysis, which limits
the possible degree of privatization. For example for parallel
loops only the value of the last iteration can be copied out, but
what if the loop terminates early? In this case the privatization
doesn’t seem to be applicable there, leaving the loop sequential.
Even more restricting is the fact, that there is no whatever
mechanism, which allows to copy-in values from previous iterations
of the parallel loop. This situation makes this kind of parallel
loop construction algorithm for most applications unusable.
Sequencing isn’t a parallelisation technique, it’s rather the
opposite. The algorithm at first tries to exploit as much
parallelism as possible by transforming all loops to parallel loops
and wrapping all statements in parallel-executable blocks. Through
sequencing the algorithm afterwards recreates sequential blocks out
of the parallel blocks, which are enforced by data dependencies and
cannot be privatized. For loop-carried dependencies the entire loop
which carries this dependency has to be sequentialized. For loop-
independent dependencies the algorithm tries to find the lowest
common ancestor in the control dependency tree, such that
identically control-dependent children of this ancestor are put in
the same sequential block. Nevertheless this approach is used as the
last possibility, if there isn’ t any kind of privatization
applicable.

Summary I1

The paper we discuss this week is about an approach for
automatically generating nested, fork-join parallelism in sequential
programs. As the programming language has to support features for
generating forks and joins it can be implemented in a language like
OCCAM or Parallel Fortran. In order to integrate concurrency the
authors introduce two new constructs ("DOALL", "COBEGIN" / "COEND")
to express instructions that can be executed in parallel. Their
meaning is that loop iterations of a "DOALL"-loop and the statements
or blocks within blocks beginning with "COBEGIN" and ending with
"COEND" can be executed in parallel. Furthermore they need an
additional construct "PRIVATE" to make loop-iterations access
distinct instances of certain variable. But in my opinion the paper
doesn't make this point really clear so I didn't get this.
As in sequential programs there are statements which depend on other
statements the authors have a look on control dependence and on data
dependence. They define "post-domination" and "control-dependence"
on nodes in a control flow graph and introduce loop-carried, loop-
independent, flow and storage-related data which is needed for the
algorithm.
When the algorithm is executed it first constructs the control and
data dependence graphs, then initializes all loops to "DOALL" and
the so called "SEQSET" of all nodes to themselves. After that it
tries to eliminate dependences between statements by privatizing.
But there are also dependences that cannot be eliminated by
privatization. For that reason the authors use another algorithm
which solves this problem by reducing parallelism. It gets a
dependence on a variable and the control and data dependence graphs
as input and outputs the reduction in parallelism that satisfies
this dependence.
Applying this algorithms on a sequential program we get a fork-join-
parallelized version of it.

Questions / Opinion:
In my opinion this approach is a quite optimistic one, because in
most of the programs the dependences are so complex that the
parallelized part of the programs would be very small. But since
this paper was already released in 1989 it can be seen as one of the
first attempts for automated parallelization.

 The authors present an algorithm to automatically transform a sequential
program
 into a parallel one, that uses fork-join parallelism and process nesting.
 The algorithm gets the control-flow- and data-dependence-graph of the
sequential
 program as input, and returns a representation of the parallelized variant in a
 concurrent execution model. The algorithm introduces privatization to resolve
 storage-related dependencies.

 On page 9 the authors say that satisfying dependences for which privatization
 fails, other dependences may become satisfied. I would like to see an example
 for this, and also a reason why privatization does not always increase
 parallelism.

 To me, the algorithm seems pretty simple. For simple programs the algorithm
 might perform well. However, I think that for more complex scenarios the
 algorithm is not able to efficiently parallelize. Data dependencies are only
 resolved by simple privatization, which in many cases is not applicable.
 Especially loops often suffer from loop-carried dependencies, avoiding
 application of the algorithm.
 On page 4, the authors say to apply the COPYOUT tag to a variable being
assigned
 inside a loop, a recurrence system has to be solved at run-time to determine
 which process would issue the last write to that variable. Furthermore, they
 say that therefore static analysis must assume that the last iteration of the
 loop writes the final value for the variable.
 I think that the presented algorithm could be combined with other optimization
 techniques, such as constant propagation or program slicing, to gain more
 information, and by that more parallelism. More advanced techniques to handle
 dependencies inside loops would be of great benefit; to me this seems to be the
 bottle-neck of the algorithm.

 It seems to me like the algorithm introduces many short fork-join parts, every
 time adding small overhead to the program. I would like to know whether the
 speedup gained by parallelism is greater than the introduced overhead by
 fork/join.
 Another problem I see there is that the algorithm might create to many
 processes while parallelizing. This can lower the speedup, since it puts
 increased pressure on the host system's scheduler.

 I am also disappointed that they did not present any benchmark results. They
 only say "it has proven to be efficient". Can this somehow be verified?

First Summary

This paper presents an algorithm for automatically parallelizing dependence-based
representation of sequential programs into nested fork-join constructs.The resulting
parallel programs form a model that allows arbitrary nesting of processes which all
together achieve the concurrent execution of loop iterations and statements that are
contained in the sequential program; the constructs for expressing parallelism are the
DOALL loops and COBEGIN...COEND statements. This algorithm based on two graphs:
control and data dependence graphs, which together represent constraints that must be
satisfied by any transformation of the original sequential program.The control
dependence graph determine whether other statements conditionally will be executed
,whrease the data dependences establish a relative ordering among statements of a
procedure .This algorithm also embodies two techniques for dealing with data
dependences:sequencing,privatization.The technique of privatization is used to avoid
the loss of parallelism by describing conditions under which a storage-related
dependence can be eliminated and that through introducing private variables ,where
the allocating process accesses a distinct instance of each variable declared
private.Privatization declares extra storage at compile-time which can be allocated only
where parallelism is actually achieved at run-time.This algorithm takes time
proportional to D(deg + log*D) + N, where N is the total number of data dependences in
the given set , D is the total number of loop-independent dependences that are in the
set and deg is the maximal out-degree of any node in the control dependence
graph.Thus, the resulting parallel program achieve ideal parallelism model that satisfies
all dependences that have been processed by this algorithm.

My questions:

1)I miss understand this idea: Statements immediately nested inside an irreducible
interval cannot be parallelized and must appear in their original, sequential order.
2)I miss understand the loop-independent dependence.
3)why the more efficient algorithm requires just a single pass over the post-dominator
tree of the control flow graph?

Automatic Generation of Nested, Fork-Join Parallelism:
Summary

This paper talks about handling data dependences and control dependences in the programs for
parallelization. Two techniques namely sequencing and privatization have been discussed in detail for
data dependence handling. In this model, program is divided into many parallel segments each of
which is forked into a process, and in the end results are combined. Hence the name Fork-join
parallelism.

Initially author describes about the parallel constructs like CO-BEGIN, CO-END, DOALL, PRIVATE
which are added to the normal sequential language constructs to report potential for concurrency.
PRIVATE construct causes creation of new versions of the same variable in a particular parallel block
just like Single Static Assignment programs. Values are copied in and out of these versions using
constructs COPYIN, COPYOUT.

Authors then describe about the concept of identical control dependence which is pivotal for the
parallelization algorithm described later. Acyclic control dependence subgraph of the program is used
in sequencing and privatization. Author identifies different kinds of data dependences in the programs
based on the pattern of data access in subsequent iteration of the loop or flow of value between two
statements.

Algorithm for parallelization: This makes use of concepts discussed above. Nodes in the control
graph is divided into many sets. Each such set consists of nodes that are identically control dependent
to each other. Nodes in each such set can be executed in parallel. All loops are marked DOALL. For
each data dependence, check and mark if it is possible to carry out privatization of the variables(try-
privatization algorithm). If that is not possible carry out sequencing. Carry out privatization to the
marked dependences.

Sequencing: In case of loop carried dependence, loop is made sequential. In case of loop independent
dependence, Lowest common ancestor L of the nodes in the dependence is found.. Sequence sets of
children of L is merged thereby marking them as executable in parallel.

Try-privatization algorithm: This returns the degree of privatization needed for the data dependency
given. For flow dependence it returns 0, indicating privatization is not possible. For loop carried
dependence , liveness of the variable is checked to determine the degree of privatization needed.

Open questions:
1. Relation between identical control dependence and potential for parallelization.
2. Idea behind try-privatization algorithm.

Automatic Generation of Nested, Fork-Join Parallelism

Thomas Karos

April 20, 2014

1 Summary

In one sentence, this paper gives a sequential language, augments it by parallel constructs and gives an
algorithm to gain parallelism out of a purely sequential program by applying those new parallel constructs
inside the sequential program.

So, the paper gives a first glance on how to automatically introduce parallel constructs into a sequential
program without breaking the semantics and without changing the core structure of the program (given
by blocks, loops etc.). This is done on the base of a quite simple language consisting of statements,
if-branches, for-loops and begin. . . end blocks. The parallel elements are a doall-loop which is allowed to
execute all iterations in parallel, and a cobegin. . . coend block which allows to have all blocks that are
immediate children of it to be executed in parallel.

The given algorithm works based on two main pieces of input information, once the data dependence
graph and the flow dependence graph for the given program. The first one connects statements to “former”
statements on which their outcome depends (according to the assigned variables). This data dependence
information is further augmented by some flags that indicate how this data dependence relates to control
flow, for example whether the dependence only holds inside on iteration of a loop (e.g. locally defined
values) or spans over several iterations (counters, buffer content etc.). The flow dependence graph gives
information about where which statement has influence on the control flow of the program.

Based on that information, the presented algorithm proceeds in multiple steps: Initially, it assumes
perfect parallelizability by tagging each loop as doall-loop and each block as cobegin. . . coend block. Now,
for each dependence, it re-establishes the sequential relation, if the current state potentially breaks the
original – sequential – semantics, by either sequentialization or privatization. The first thing is roughly
spoken resetting (all) the constructs that cause the distruction of semantics. The second one is more
tricky. It enables parallelism by giving a thread a private copy of some value. If that is possible (e.g.
because a variable is reused or reassigned without overlapping effects), it also indicates whether this
private value must be supplied for later computations by copyout and whether this value needs to be
initialized with a former value (copyin). The result is a program that is annotated with information
about which parts can be executed in parallel and which variables need to be copied to do so.

2 Open Questions

• How far can this algorithm be extended? For example, is it possible to make it recognize modulo
counters in order to parallelize loops that touch each and every second array element.

• The algorithm does not say anything about the costs of parallelization. Is that reasonable? On
which bases can a runtime environment or a compiler decide whether to take the privatization
option and fork or simply stay sequential?

1

Automatic Generation of Nested, Fork–Join Parallelism
===

The authors present an algorithm which, given a imperative program and its
associated control flow and data dependence graph yields an equivalent program
using fork/join parallelism. Their approach starts by setting all statements in
a loop to be run concurrently. Afterwards, to satisfy dependencies, statements
are either put into sequence again, or privatized. The authors consider
loop-caried, loop-independent, flow and storage-related data dependencies.
Privatization basically copies values, so that processes can work with private
instances of variables. This aproach only parallelizes statements in reducible
intervalls. The authors mention that node splitting would allow to obtain fully
reducible programs; it remains unclear why they don't use it.
- Is privatization of any use when the to be transformed program is already in
 SSA form?
- What is the overhead of tagging variables with COPYIN and COPYOUT?
- Are all sections marked as parallelizable concurrently executed? If so,
 doesn't that cause too much overhead/pressure on the scheduler?
- The given examples don't contain memory accesses. What happens in their
 presence?
- What exactly is meant by "reducible intervall"?
- Which modifications would be necessary to support more control structure,
 like break/continue statements?
- Are there any techniques that can deal with flow dependencies? Could
 speculization help in this case?
- The sequence algorithm works on whole loops. Isn't that wastefull if
 the loop does also some further work, which doesn't affect the dependence,
 and which could in turn be run in parallel?
- The authors discard synchronization primitives as too costly (and their
 system does not support them anyway). Could using them be benefitical,
 though, especially in the case where a dependency only occurs in one branch
 of a switch statements, which is seldomly executed? If so, could the
 algorithm be easil augmented to make use of them?

Paper I1

This paper introduces an algorithm to automatically parallelize a program. To do that it first of all
introduces new language constructs: the DOALL loops and the COBEGIN…COEND statement. Those
mark sections which can be executed in parallel. DOALL loops are used to execute loop iterations in
parallel (basically if a loop needs 4 iterations sequentially, those 4 iterations can be executed in
parallel).

 The COBEGIN/-END statement is used to signal possible parallel execution of statements inside this
block.

Of course this can lead to data races so simply executing everything in parallel is not the way to go.
To be able to do that a new construct has to be introduced: the PRIVATE statement. This is used to
signal the program to access a distinct instance of a variable to avoid those problems.

The algorithm itself works using a dependency analysis and based on those information which parts
can be marked with “DOALL” and “COBEGIN/-END”. The pseudocode describes its behavior roughly
like this:

All loops are converted to DOALL loops and a mysterious “SEQSET” which is used to keep track of the
control dependencies is initialized and calculated. Afterwards some more dependencies are tried to
get resolved by privatizing. If I managed to understand the algorithm correctly, the COBEGIN/-END
blocks are inserted at the nodes of the SEQSET which are independent to other nodes.

Of course privatizing cannot eliminate every dependency. Code which is dependent on each other
due to the control flow is such a case.

Summary of Automatic Generation of Nested, Fork-Join Parallelism

The paper Automatic Generation of Nested, Fork-Join Parallelism presents
an algorithm that can automatically parallelize programs into fork-join pro-
grams. The fork-join programs are a composition of statements and loops of
sequention programs. The data dependencies in the problems are dealt by
this algorithm using two different techniques:
1. Sequencing: this process reduces parallelism;
2. Privatization: this process uses private variables to remove dependencies.
This algorithm takes as input an analyzed sequential procedure and its con-
trol and data dependency graphs. The algorithm then looks for parallelism
in the loops, or applied node splitting to find fully reducible programs.
This algorithm is a first of its kind which can automatically generate paral-
lelism for general models.
A single instruction stream, referred here as a process, exists before, after
and during every execution. To allow for one process to execute multiple con-
current processes two additional constructs are introduced, they are DOALL
and COBEGIN...COEND. The DOALL is a cognitive sequential iterative
process which allows for concurrent execution of iterations. It is a fork of
iterations with corresponding joins at the completion. Where as, the COBE-
GIN...COEND construct is similar to a BEGIN...END construct except that
closely nested blocks are executed concurrently. COBEGIN is the fork and
COEND is the corresponding join.
A control dependence graph lists all the conditions that affect execution of a
statement. It is the control flow of a program. The data dependence graph
is a directed graph whose nodes are the nodes of the control flow graph
and the edges represent execution of read or write. Together the data and
control dependence graphs put forward all the necessary contraints that need
to be satisfied after the changing of the sequential program into a fork-join
program.
This algorithm provides for a good basis for compiler analysis and optimiza-
tion. The privatization technique eliminates storage related dependencies
without loss of parallelism. The worst case complexity of the algorithm is
D(deg + log*D) + N, where N is the total number of data dependences in
the given set , D is the total number of loop-independent dependences that
are in the set and deg is the maximal out-degree of any node in the control
dependence graph.

1

Summary

The paper describes an algorithm for transforming sequential programs into
concurrent programs using nested-fork/join parallelism. The resulting
programs will execute as much code in parallel as is feasible, they
consist of sequential parts called processes that can spawn new processes
on their own (nesting), multiple spawned processes may be executed in
parallel (fork) but the execution of processes following their parent
process will be postponed until all forked processes have terminated
(join).
The authors impose an abstract programming system based on PTRAN which
they claim to be adaptable to other systems, this adaptation is not
described further. The assumptions the authors make are: Programs are run
with a global shared memory where variables can be defined as private so
they are only accessible to the declaring process and its nested
processes. Three new language constructs are introduced:
DOALL, similar to a common loop but each "iteration" is performed in
parallel with no defined order;
COBEGIN...COEND, a block which executes all immediate nested blocks or
statements in parallel;
PRIVATE, declaration of a variable that is confined to the be used by a
single process and its nested processes, may be combined with COPYIN or
COPYOUT which initialize the variables value before forking or export its
value for later use after joining.
The authors classify existing data dependences using four different
annotations:
Loop-carried: Data is being written in one iteration and referenced in
another.
Loop-independent: Data is only written and read within complete
iterations.
Flow: Data is written at one point and read later.
Storage-related: Data is read or written by one statement and overwritten
at a later point.
The described algorithm works roughly as follows:
1. Build the control-flow-graph, control-dependence-tree and the data-
dependence-tree of the original program.
2. Initialize all loops in the original program as DOALL constructs,
initialize all nodes in the CDT as execution-independent among them.
3. For all data-dependences check if they can be satisfied by privatizing.
If this is not possible sequence them: If the dependence is loop-carried
mark the carrying loops for sequential execution, if it is loop-
independent find the lowest common ancestor in the CDT and mark its two
children leading to the depending statements for sequential execution.
4. Privatize all data-dependences which can be privatized:
 - Flow dependences can not be privatized
 - If the dependence is loop-carried it can only be privatized if its
variable is introduced within the loop. COPYOUT is required when its
variable is used after the loop is executed.
 - If the dependence is loop-independent it may be privatized depending
on the other storage-related dependences.

Possible discussion questions

- How can this approach be adapted to other languages/memory systems? (e.g
Java/C/Python/Functional languages)
- Does the assumption that a COPYOUT has to be performed by the last
iteration in a DOALL construct always hold?
- What data-dependences could be unprofitably eliminated by privatization
if performed before sequencing?
- Why does renaming not increase parallelism for this algorithm?

	
	
	
	
	
	
	
	
	
	

