Summary:

The paper proposes an approach called Parcae, providing a generally applicable
automatic system for platform-wide dynamic tuning.

Despite other parallelization approaches, which merely try to convert sequential
programs into parallel ones through e.g. speculation, Parcae combines multiple
parallelization techniques with an adaptive system to select the best one at runtime.
Moreover, Parcae takes not only the degree of parallelization of a single program
into account, instead it provides the possibility of a platform-wide optimization of
multiple parallel programs simultaneously, while taking the usage of system resources
itself into account too.

The Parcae system itself is composed by two different components:

1. The Parcae compiler, Nona, provides the ability of automatic extraction of
different types of parallelizable regions out of a given input program. The
prototype implementation is capable of extracting DOANY and PS-DSWP
style parallelism out of loop nests.

Additionally, the compiler inserts code to efficiently pause, reconfigure and
resume the execution of the parallelized code, which is required in order to
perform a run-time adaption of a given task in the program.

This includes the insertion of profiling hooks for the run-time system in order
to monitor the performance of the given application.

2. The Parcae run-time system, consisting out of the Decima monitor and the
Morta executor.
Since the run-time system needs to know how “well” a given instance of a par-
allelized version performs with respect to the current execution parameters,
there has to be a way to monitor the “throughput” of this instance. This is
accomplished by the Decima monitor system via the already mentioned per-
formance hooks inserted by Nona. Throughput is expressed in the number
of iterations, which have been completed during a certain amount of time.
Additionally, the time the instance spends waiting is measured, enabling the
runtime system to detect bottlenecks e.g. for communication in the PS-DSWP
system.
The adaption itself is finally performed by the Morta executor, which selects
appropriate different parallelized versions of the region together with run-time
parameters such as number of concurrent parallel tasks, to find an optimal
degree of parallelism (DoP) by maximizing the overall throughput.
Together with the measures provided by Decima and the inserted hooks by
Nona, Morta is able to perform an continuous adaption of all monitored pro-
grams in the system. This includes the “hot” modification of execution param-
eters during runtime up to switching the parallelized version on each iteration
of a parallelized loop.

Issues / Open Questions:

During the extraction of the DOANY parallelism in NONA only commutativity
relaxations are mentioned in order to ignore certain loop-carried dependencies and
insert appropriate synchronization operations for these. However, I'm unsure if this
is sufficient, since for arbitrary reordering not only commutativity but associativity
is required too.

Summary A2

This week we discuss a paper about "Parcae" which is a system providing
flexible parallel execution of programs. Because many parallel
implementations of many programs only work optimal for certain areas of the
input space and for certain system configurations, it is hard for software
developers to find algorithms that perform well outside this area, too.
Parcae tries to solve this problem by dynamically tuning the program for the
current system configuration, because at execution-time the so called "run-
time factors" like the number of available cores, the memory bandwidth and
the system workload are known.

In order to generate flexible parallel code Nona, the compiler that is
provided by Parcae, extracts several parallelism types from program regions,
it inserts code that enables the program to pause, reconfigure and resume
itself at run-time and it puts profiling hooks into the code to allow
monitoring the performance. During compilation Nona first looks for
parallelism in the program dependence graph of the outermost loop nest. Then
several transform are applied to the PDG resulting in code packages called
tasks. In their current implementation the authors concentrate only on
DOANY- and PS-DSWP-parallelization. In a third step Nona modifies the
control flow so that the tasks can be managed by the runtime-system.

During execution when a parallel region is reached the run-time system
called Morta starts with a sequential execution to establish a baseline
performance as a reference value. After ten iterations it starts
reconfiguring the current configuration by launching a parallel scheme. Then
it tunes the DoP (degree of parallelism, number of threads for each parallel
task) and resumes the execution regularly until the best configuration is
found. As soon as the environment changes it restarts this procedure to
adapt the program to the new system configuration.

Questions / Opinion:

1. Why do the authors highlight the minimization of energy consumption so
often. In my opinion energy efficiency is a nice side effect but it cannot
be the main goal of such an approach.

2. What is meant by the "hottest" outermost loop nest in 3.17?

3. What are the commutativity annotations the authors talk about in 3.1

1 Summary

In this paper, the authors present Parcae, a system for flexible parallel execu-
tion. Parcae aims at reducing overall execution time while also lowering energy
consumption. Parcae consists of three submodules: the Nona compiler, that
generates flexible parallel programs and adds profiling hooks for the Decima
run-time system. Decima monitors program performance and system events.
The third part is Morta, it executes, terminates, and replaces tasks.

The Nona compiler parallelizes the sequential baseline version with different
techniques, and extracts tasks for every parallel region. It therefore uses the
Multithreaded Code Generation algorithm, and adapts its output to flexible
execution.

Morta uses Decima to monitor the processes and to find an optimal config-
uration by repeatedly searching for a better configuration. Therefore, Morta
replaces running configurations with new ones, monitors them with Decima,
and compares the to a baseline.

The evaluation sections shows promising results with up to 42% speedups and
84% energy saving.

2 Questions & Opinions

This work combines static parallelization, monitoring, and dynamic code re-
placement in a neat way that allows to target different hardware successfully.

Parcae: A System for Flexible Parallel
Execution

1 Summary

This paper presents a system consisting of both compile time and run time
components that auto-tune the program for parallel execution while achieving
maximum speed up and least energy consumption. This system determines at
the run time the parallel configuration for the program to execute . System has a
compiler, performance monitor, and a component that controls the execution of
parallel components. Authors observe that for any program there is an optimal
number of cores to obtain maximum speed-up. Energy can be saved by switching
off the rest of the cores.

The Nona compiler builds the PDG of the program, and tries to relax some
dependencies. Then it uses MTCG algorithm to create initial parallel transfor-
mations called tasks. It does so by building CFG, and inserting communication
and synchronization code into basic blocks. In the next step, Nona converts
these tasks such that number of threads needed for each task is determined at
runtime. Nona inserts code for the following things. Firstly, after each iteration
control is yielded to Morta runtime system which decides whether task should
be paused. Register and stack variables are restored and saved before and after
each iteration respectively.

Morta runtime system is used to synchronize the tasks. Whenever Morta
decides to change the parallel configuration, it sends pause signal to master task
which in turn sends it to other tasks. It also sends resume signal to tasks after
setting the new configuration.

Decima runtime system is used to monitor performance of the system. Dif-
ferent parallel configurations are tried and Decima makes note of execution time
of each such configuration to decide the best. Initially sequential scheme is used
for certain number of iterations before switching to an initial parallel scheme.
Different degree of parallelism is tried by gradually increasing or decreasing DoP.
Execution time needed for each iteration in a certain configuration is noted down
to decide the best configuration.

2 Questions

1. Time monitoring is responsibility of which component? Section 3.4 says
Decima, while section 5 says it is done by Morta.

Parcae: A System for Flexible Parallel Execution

Summary

The Parcae system consists of several components that altogether allow to have a resource saving
and flexible parallelized compilation of a program that adopts to the current state of the system
it runs on (available cores, memory bandwidth and so on).

The first component is the Nona compiler. It compiles a (sequentially given) program by ap-
plying different parallelization schemes for loops and augments the generated code (when still
represented as SSA graph) with additional code that is needed later for the run-time com-
ponents to work. Since the code shall be dynamically replaceable between several iterations
of parallelized loops, these additions include code that from cross-iteration dependencies from
thread-private context (local heap and registers) to the heap as well as some hooks that enable
online monitoring of the code performance.

The other two components are the performance monitor Decima and the run-time environment
Morta. The main idea of performance monitoring is trying several implementations for a very
short period of time in the given resources and stick with the version of optimal degree of
parallelism (based on the measured values) as long as the available resources do not change. If
they do, this experimental phase restarts. The online replacement of code versions is done by a
hierarchical signal passing mechanism which allows to pause the current execution of a (possibly
parallelized) loop after the current iteration, to switch to the implementation determined optimal
(in terms of execution time and resource consumption) and resume the execution.

The system can also be extended to multiple programs on one hardware and coexist with the
execution of other programs, where the relation between operation system and the presented
run-time system is not perfectly clear to me.

Open Questions

e What are hottest outermost loop nests as well as min, mazr and sum reductions?
e What does the rdtsc instruction?

e The system is obviously conceptually extendable to more parallelization schemes, but how
does that affect the overhead of the system?

Summary Parcae

The paper introduces Parcae, a runtime system which runs adaptable, parallelized
programs. Its defining feature is that it monitors the executed programs, and can recal-
ibrate their parallelism scheme and the number of resources they use to obtain higher
throughput. A further interesting characteristic is that as a secondary goal it optimizes
the schedule to minimize power usage.

The Parcae system consists of several parts:The Nona compiler is able to find inher-
ent parallelism in programs (by analyzing the Program Dependence Graph). It is able
to recoginze min, max and sum reductions. It also applies two parallelizing transfor-
mations: DOANY and the previously seen PS-DSWP. By keeping multiple versions of
the code (sequential and the aforementioned parallel variants), the system can dynam-
ically switch between them to achive the best performance. To enable those switches,
the compiler adds further code: A task (body of a loop) yields to the runtime, and
asks whether it should continue running (possibly on a different thread), or pause. To
support migration, special code to copy values from registers carrying cross-iteration
dependencies is inserted. A further part of the the system is the Morta run time system,
which determines which verrsion of the code generated by Nona is used. In order to
do this, it first executes the sequential for some time, to obtain a baseline value. Af-
terwards, the system tries several combinations of parallelization scheme and degree.
Once every scheme has been tried, the system chooses the one with the best mea-
sured throughput and keeps on using it; until Decima, the monitoring system, detects a
change of the workload, or of the available resources. Monitoring is partly done using
hardware TSCs.

Noteworthy is the approach the authors used to find the best degree of parallelism:
They use a finite difference gradient. Unfortunately, they don’t really elaborate on why
they choose this method. They mention however that their approach has one drawback,
namely that it might find only a local optimum.

In the end, the authors evaluate their approach on 2 systems, showing that they
can achieve speepup compared to the sequential verion. They further argue that their
system can not only be used for a single program, but for multiple ones running in
parallel, and show that in this case, their system outperforms the Linux scheduler,
achieving better throughput.

Open Questions

e What exactly is DOANY parallelism?
e How can one apply PS-DSWP without the synchronization array?
e Why is the assumption that there is only one minimum justified (in many cases)?

e Why did they choose to use a forward difference for the finite difference?

Summary A2

This week’s paper presents a system called “Parcae”, a compiler and run-time system to
automatically parallelize during compile-time and to adapt execution depending on the current state
of the underlying system.

The paper divides its system into 3 parts: the programmer, the Nona compiler and the run-time
system. The programmer is advised to insert commutativity annotations into his sequential code
which the Nona compiler can use while building the PDG. The Nona compiler itself performs 3 steps:
PDG construction, parallelization and flexible code generation.

The system uses 2 parallelization schemes: DOANY and PS-DSWP, applying the one that fits best.

For flexible code generation the Nona compiler simply modifies the code generated by MTCG. MTCG
only generates code for a fixed amount of threads and is therefore unsuitable for adaptive execution.
Nona applies 5 changes to the generated code to make it applicable for the wanted scenario.

The run-time system monitors the execution and calibrates new configurations with different levels
of parallelism. This can be divided into 4 steps: initialization, calibration, optimization and monitoring
of the configuration. The baseline that it starts with is always the sequential version. If a parallel
configuration turns out to be faster than the baseline, it becomes the new baseline.

When executing, processes running a program in parallel need to communicate information about
their iteration to each other. A process will send one of 3 signals when an iteration is finished: pause
— which means that the process is currently paused until it receives the signal to continue; iterating —
which means that this thread finished an iteration; and iteration-end — meaning that the thread just
finished the last iteration of the loop. The pause signals may come from other processes or the run-
time system itself.

Open questions:

1. The third change Nona performs to modify MTCG code (page 136, 3.3, bottom): what does it
mean and why is it needed?
2. Why do processes need the ability to pause and continue execution?

Parcae: A System for Flexible Parallel Execution

1 Summary

The paper proposes the Parcae system for automatic compiler parallelization and runtime optimization.
The system is composed of three components:

e A compiler that extracts parallelism called Nona. Nona will identify potential parallelizable loops in
the CFG, it will then try to eliminate some data-dependences using privatization or recognition of
reduction patterns such as min,max,sum etc. Some dependences may inhibit concurrent execution
but not unordered execution, Nona will allow the programmer to annotate dependences to be
commutative to handle these cases. After resolving or relaxing as much data-dependeces as possible
Noma will produce multiple output programs: A normal sequential version and multiple parallel
version that are obtained by using standard loop nested parallelization techniques (in their example
PS-DSWP and DOANY, they claim others can be adapted).

e A runtime calibration and execution tool called Morta. Morta will profile the programs generated
by Nona for a set amount of iterations and compare their performance measured by iteration
throughput. To get comparable values Morta will execute each program on its own for a fixed set
of iterations (defaults to 10) and with different grades of parallelism. After an iteration finishes
every thread waits for Morta to assign the next task or end the execution. The configuration with
best throughput will then be executed. Morta is also able to reconfigure at a later point in time if
a change in workload is detected or system resources change.

e A system monitoring utility called Decima. The task of Decima is to passively monitor the execution
of the parallelized program and available system resources. If a change in workload is detected
Decima will notify Morta to schedule a reconfiguration.

2 Questions

e When Decima detects a change in workload and schedules a reconfiguration through Morta, how
are the states of tasks that have finished preserved before reconfiguration?

	
	
	
	
	
	
	Open Questions

	
	

