
SSA Introduction

Sebastian Hack
hack@cs.uni-saarland.de

Compiler Construction 2017

Saarland University, Computer Science

1

Another kind of CFGs

p

q

x ← e

Effects on edges. Nodes called
program points. One data flow fact

per program point. Join of data flow
facts done in fixpoint iteration

(cf. data flow slides).

x ← e`

D◦(`)

D•(`)

Nodes are basic blocks of
instructions. Closer to the hardware.
Edges denote flow of control. Every
node has incoming (◦) and
outgoing (•) data flow information:

D◦(`) :=
⊔

p∈pred(`)

D•(p)

2

Problem and Motivation

A : x ← 1

B : y ← 1

C :

D : true(y = 1) E : false(y = 1)

F : G : x ← 2

H : true(x = 1) I : false(x = 1)

J : K : y ← 2

L : true(?) M : false(?)

N : print(x)

� Consider Constant Propagation

� Lattice: C := (Vars → Z>⊥)⊥

� Per CFG node we have to keep a
mapping from V := |Vars| variables
to abstract values

� Space requirement N × V

3

Flow-Insensitive Constant Propagation

A : x ← 1

B : y ← 1

C :

D : true(y = 1) E : false(y = 1)

F : G : x ← 2

H : true(x = 1) I : false(x = 1)

J : K : y ← 2

L : true(?) M : false(?)

N : print(x)

� Get around storing a map from vars
to Z>⊥ at every program point

� Keep one element x ∈ C per CFG
not per program point

� Solve the single equation

d w
⊔
i

fi (d)

� Loss of precision because abstract
values of all definitions of a variable
are joined

4

SSA

A : x1 ← 1

B : y1 ← 1

C :
x2 ← φ(x1, x5)
y2 ← φ(y1, y4)

D : true(y2 = 1) E : false(y2 = 1)

F :
x4 ← φ(x2, x3)
x5 ← 2− x4

G : x3 ← 2

H : true(x5 = 1) I : false(x5 = 1)

J : y4 ← φ(y2, y3) K : y3 ← 2

L : true(?) M : false(?)

N : print(x5)

� Flow-Insensitive Analyses

� Each Variable has a static single
assignment, i.e. one program point
where it occurs on the left-hand
side of an assignment

� Identify program points and variable
names

� φ-functions select proper definitions
at control-flow joins

5

(Un-Conditional) Constant Propagation in SSA

� Perform flow-insensitive analysis on SSA-program

� Domain: C := (Vars → Z>⊥)

� Transfer functions:

J; K] C := C
Jx ← e; K] C := C [x 7→ JeK] C]

Jx ← M[e]; K] C := C [x 7→ >]
JM[e1]← e2K] C := C

Jx0 ← φ(x1, . . . , xn)K] C := C [x0 7→
⊔

1≤i≤n C (xi)]

� φ-functions make join over different reaching definitions explicit

� Solve single inequality

C w
⊔
i

fi C

by fixpoint iteration

6

Example

A : x1 ← 1

B : y1 ← 1

C :
x2 ← φ(x1, x5)
y2 ← φ(y1, y4)

D : true(y2 = 1) E : false(y2 = 1)

F :
x4 ← φ(x2, x3)
x5 ← 2− x4

G : x3 ← 2

H : true(x5 = 1) I : false(x5 = 1)

J : y4 ← φ(y2, y3) K : y3 ← 2

L : true(?) M : false(?)

N : print(x5)

0 1 2 3

x1 ⊥ 1 1 1
y1 ⊥ 1 1 1
x2 ⊥ ⊥ 1 >
y2 ⊥ ⊥ 1 >
x3 ⊥ 2 2 2
x4 ⊥ ⊥ > >
x5 ⊥ ⊥ > >
y3 ⊥ 2 2 2
y4 ⊥ ⊥ > >

Round-robin iteration. Initialization
with ⊥. Fixed point reached after
three rounds. Precision loss at φs
because we could not exclude
unreachable code.

7

Conditional Constant Propagation on SSA
called sparse conditional constant propagation (SCCP) [Wegman et al. 1991]

� Consider control flow as well. Perform two analysis in parallel

� Cooperation between two domains:

C := Vars → Z>⊥ U := Blocks → {⊥U ,>U}

� ⊥U = unreachable code, >U = reachable code

� Two transfer functions per program point i :
fi : C× U→ C for constant propagation
gi : C× U→ U for reachability

� Solve system of equations

x w
⊔
fi (x , y)

y w
⊔
gi (x , y)

x ∈ C, y ∈ U

8

Example

A : x1 ← 1

B : y1 ← 1

C :
x2 ← φ(x1, x5)
y2 ← φ(y1, y4)

D : true(y2 = 1) E : false(y2 = 1)

F :
x4 ← φ(x2, x3)
x5 ← 2− x4

G : x3 ← 2

H : true(x5 = 1) I : false(x5 = 1)

J : y4 ← φ(y2, y3) K : y3 ← 2

L : true(?) M : false(?)

N : print(x5)

0 1 2
x1 ⊥ 1 1
y1 ⊥ 1 1
x2 ⊥ 1 1
y2 ⊥ 1 1
x3 ⊥ 2 2
x4 ⊥ 1 1
x5 ⊥ 1 1
y3 ⊥ 2 2
A >U >U >U
B ⊥U >U >U
C ⊥U >U >U
D ⊥U >U >U
E ⊥U ⊥U ⊥U
F ⊥U >U >U
G ⊥U ⊥U ⊥U
H ⊥U >U >U
I ⊥U ⊥U ⊥U
J ⊥U >U >U
K ⊥U ⊥U ⊥U
L ⊥U >U >U
M ⊥U >U >U
N ⊥U >U >U

Round-robin interation. Each column shows the value of x ∈ C
(upper rows) and y ∈ C (lower rows) in a single iteration of the
fixpoint algorithm. Initial values are ⊥ and ⊥U . Root node A
initialized with >U . Fixed point reached after one round. Can
prove code dead in cooperation with constant propagation
information.

9

Transfer Functions

� For constant propagation (functions fi)

J` : x ← e; K] C ,U := C [x 7→ JeK] C]
J` : x ← M[e]; K] C ,U := C [x 7→ >]

J` : x0 ← φ(x1, . . . , xn)K] C ,U := C [x0 7→
⊔

X]
X := {xi | U(pred(`, i)) = >U}

J·K] C ,U := C

� For reachability (functions gi)

J` : true(e)K] C ,U := U

[
` 7→

{
⊥U JeK] C v 0

>U otherwise

]

J` : false(e)K] C ,U := U

[
` 7→

{
>U 0 v JeK] C
⊥U otherwise

]
J·K] C ,U := U

10

φ-functions have semantics

x01 ← φ(x11, . . . , xm1)
...

x0n ← φ(x1n, . . . , xmn)

i-th edge

≡

X1 ← xi1
...

Xn ← xin
x01 ← X1

...
x0n ← Xn

Commonly stated as

All φ-functions are evaluated simultaneously at the beginning of the block

11

Where to place φ-functions?

� φ-functions have to be placed such that

1. SSA program P ′ has the same semantics as original program P
2. Every variable has exactly one program point where it is defined

� Observation:

x1 ← . . . x2 ← . . .

y ← x? + 1

– First point reached by two different definitions of (non-SSA) variable
has to contain a φ-function

– In the SSA-form program, every use is reached by a single unique
definition

12

Join Points

Definition

Two paths p : X0
∗→ Xj and q : Y0

∗→ Yk converge at a program point Z if

1. X0 6= Y0

2. Z = Xj = Yk

3. Xj ′ = Yk ′ =⇒ j = j ′ ∨ k = k ′

� A program point Z needs a φ-function for variable a, if it is the
convergence point of two program points X0 and Y0 where each is a
definition of a

� Formally: J(S) := {Z | X ,Y ∈ S converge at Z}.

� J(defs(a)) is the set of program points where φ-functions have to be
placed for a

� How to compute join points efficiently?

13

Dominance

� Every SSA variable has a unique program point where it is defined

� The definition of a SSA variable dominates all its (non-φ) uses

Definition (Dominance)

A node X in the CFG dominates a node Y if every path from entry to Y
contains X . Write X ≥ Y .

� Dominance is a partial order

� Dominance is a tree order: For every X ,Y ,Z with X ≥ Z and Y ≥ Z
holds X ≥ Y or Y ≥ X

� Strict dominance: X > Y := X ≥ Y ∧ X 6= Y

� Immediate/direct dominator: idom(Z) = X with
X > Z ∧ @Y : X > Y > Z

14

Dominance Frontiers
Efficiently computing SSA. . . [Cytron et al. 1991]

Definition (Dominance Frontier)

DF (X) = {Y | X 6> Y ∧ (∃Z predecessor of Y : X ≥ Z}

� DF+(X) is the least fixed point S of S = DF (X ∪ S)

� Theorem:
DF+(X) = J(X ∪ {root})

� Proof Sketch:
1. Show that for every path p : X

∗→ Z there is a node in {X} ∪ DF+(X)
on p that dominates Z

2. Show that the convergence point Z of two paths X
∗→ Z ,Y

∗→ Z is
contained in DF+(X) ∪ DF+(Y)

3. Using this, we can show that J(S) ⊆ DF+(S)
4. Show DF (S) ⊆ J(S) for root ∈ S
5. Using induction on DF i show that DF+(S) ⊆ J(S)

15

Dominance Frontiers

Definition (Dominance Frontier)

DF (X) = {Y | X 6> Y ∧ (∃Z predecessor of Y : X ≥ Z}

� Can be efficiently computed by a bottom up traversal over the
dominance tree:

1. Each CF-successor Z of X is either dominated by X or not
2. if not, it is in the dominance frontier of X
3. if yes, look at the dominance frontier of Z : All Y ∈ DF (Z) not

dominated by X are also in DF (X)

DF (X) = {Y successor of X | X 6> Y }

∪
⋃

X=idom(Z)

{Y ∈ DF (Z) | X 6≥ Y }

16

SSA Construction
Cytron et al.

1. Compute dominance tree

2. Compute iterated dominance frontiers DF+(X) for all definitions of
each variable

3. Rename variables

– Every use takes lowest definition in the dominance tree
– Note that φ-function uses happen at the end of the predecessors
– First lemma of proof sketch guarantees that this definition is available

17

