SSA Introduction

Sebastian Hack
hack@cs.uni-saarland.de

Compiler Construction 2017

Saarland University, Computer Science

Another kind of CFGs

re®

X < €

7@

Effects on edges. Nodes called
program points. One data flow fact
per program point. Join of data flow

facts done in fixpoint iteration

(cf. data flow slides).

D, (¢)
([ree]
D, (¢)

Nodes are basic blocks of

instructions. Closer to the hardware.

Edges denote flow of control. Every
node has incoming (o) and
outgoing (e) data flow information:

D)= || Dup)

pEpred(£)

N

Problem and Motivation

m Consider Constant Propagation

’ E : false(y = 1) ‘ m Lattice: C:= (Vars — ZI)L

m Per CFG node we have to keep a

mapping from V := |Vars| variables

to abstract values

> C:
’D:tru:(yzl)‘ E
¥
F:
’H:tru:(le)‘ F: fa/se(x:l)‘
’J: *

‘<_{ K - ;<_ 5 ‘ m Space requirement N x V

—{ L: trtle(?) \

~—

1 M : false(?) ‘

¥

Flow-Insensitive Constant Propagation

m Get around storing a map from vars

c to ZI at every program point
> :
v - m Keep one element x € C per CFG
’ D : true(y =1) ‘ ’ E : false(y = 1) ‘ not per program point
v
B Solve the single equation
v ~ d3 I_I fi(d)
’ H : true(x = 1) ‘ ’ fa/se (x=1) ‘ P
v
’ J: ‘ Kiy<«2 ‘ m Loss of precision because abstract
¥ - I G values of all definitions of a variable
—{L:true(.)‘ WM.false.)‘ are joined

¥

SSA

X2 — P(x1, X5)
2 <= ¢(y1,ys)
v ~
’ D : true(y» = 1) ‘ ’ E : false(y» = 1) ‘
* !
X4 <— X2, X3
X5 <— f(— Xq)
¥ ~
’ H : true(xs = 1) ‘ I : false(xs = 1) ‘
12 2
’J y4<—(;5(y2,y3)‘ K: y3<—2‘
\

—{ L: true(") ‘

W M : false(?) ‘

17
N : print(xs)

Flow-Insensitive Analyses

Each Variable has a static single
assignment, i.e. one program point
where it occurs on the left-hand
side of an assignment

Identify program points and variable
names

¢-functions select proper definitions
at control-flow joins

(Un-Conditional) Constant Propagation in SSA

B Perform flow-insensitive analysis on SSA-program
m Domain: C := (Vars — Z])

m Transfer functions:

L[JfFC = C
[x et C = Clx~ [e]f C]
[x &« M[e;]FC = Clx~ T]
[[I\/I[el] — (i‘2]]ﬁ c = C
[0 < ¢(x1,- -, x)]FC == Clxo+ Li<icn €(xi)]

B ¢-functions make join over different reaching definitions explicit

m Solve single inequality
cal|fic

I

by fixpoint iteration

Example

L X2 = ¢(X15X5)
©yo (1, ya)

v ~.
’D:true(yzzl)‘ ’E'false(yzzl)‘
' !

. X 9(xe,x3) .
DI eis

’ H: truev(x_r, =1) ‘

’ I : false(xs = 1) ‘

’J:y4<—v¢(y2,y3)‘<—{K:y3<—2‘

—{ L: trtle(?) \

’ M : false(?) ‘

¥
N : print(xs)

o
e =
N N e
HN A AN = e
HNo A AN A A= o

Ya

Round-robin iteration. Initialization
with L. Fixed point reached after
three rounds. Precision loss at ¢s
because we could not exclude
unreachable code.

~

Conditional Constant Propagation on SSA
called sparse conditional constant propagation (SCCP) [Wegman et al. 1991]

m Consider control flow as well. Perform two analysis in parallel
m Cooperation between two domains:

C:= Vars - 7| U := Blocks — { Ly, Ty}

1Ly = unreachable code, T = reachable code

m Two transfer functions per program point /:
fi : C x U — C for constant propagation
gi : C x U — U for reachability

Solve system of equations

X LI fi(x,y)

J
= xeC,yelU
y 32 Ueilxy) Y

Example

0 1 2
X1 1 1 1
1 1 1 1
X 1 1 1
¥2 1 1 1
X ¢(x1, x5) x| L2 2
Xq 1 1 1
y2 4= ¢(y1, ya) s L1 1
s | L 2 2
v Al Ty Tu To
D : true(y, =1 BlLly Tuv Tu
’ (y2) Clly Tu Tu
v D | Ly Ty Ty
E |1y, L1y Ly
Xz = ¢(x2, x3) Fliy To Tu
G 1 1 1
Xi 2 — X u u u
5 & 4 Hlly Ty Tg
¥ Il +iv Lv Lu
J 1y Ty Tu
’ H - true(X5 = 1) ‘ ’ I : false(X5 = 1) ‘ K| L1y Ly Ly
¥ L 1y Ty Ty
M 1y Ty Ty
’J:y4<—¢(y2,y3)‘<—{K:y3<—2‘ N Ly Ty To
¥ Round-robin interation. Each column shows the value of x € C
. ? . ? (upper rows) and y € C (lower rows) in a single iteration of the
L: true(:) ‘ ’ M: false(:) ‘ fixpoint algorithm. Initial values are L and _L ;. Root node A
initialized with T (. Fixed point reached after one round. Can
U
prove code dead in cooperation with constant propagation
N prmt(X5) information.

Transfer Functions

m For constant propagation (functions f;)

[6:x+ et C,U

[¢: x < Mle];]* C,U

[€: x0 < P(x1,. .., xa)]F C, U
X

[J¢c,u

m For reachability (functions g;)
[¢: true(e)]* C,U =

[¢: false(e)]* C,U :=
[H]ﬂ C,U =

= Clx s [e]t C]

Clx— T]

C[Xo — |_|X]

{CXi | Ulpred(¢, 1)) = Tu}

Ly [e]*CCo
Ty otherwise
Ty 0C[e]fC
1y otherwise

U\l

Ull—

10

¢-functions have semantics

i-th edge
x01 — O(X11s- -5 Xm1)
Xon ¢(X1n7 cee 7an)

Commonly stated as

All ¢-functions are evaluated simultaneously at the beginning of the block

X1

Xo1

Xon

T

Xin

X1

11

Where to place ¢-functions?

m ¢-functions have to be placed such that

1. SSA program P’ has the same semantics as original program P
2. Every variable has exactly one program point where it is defined

m Observation:

- First point reached by two different definitions of (non-SSA) variable
has to contain a ¢-function

- In the SSA-form program, every use is reached by a single unique
definition

Join Points

Definition

Two paths p : Xg 5 Xjand q: Yo 5 Yy converge at a program point Z if
1. Xo # Yo
2. Z=X; =Y\
3.)(j/:Yk/ = j=j/Vk=¥K

A program point Z needs a ¢-function for variable a, if it is the
convergence point of two program points Xp and Yy where each is a
definition of a

Formally: J(S):={Z | X,Y € S converge at Z}.

J(defs(a)) is the set of program points where ¢-functions have to be
placed for a

How to compute join points efficiently?

13

Dominance
B Every SSA variable has a unique program point where it is defined

m The definition of a SSA variable dominates all its (non-¢) uses

Definition (Dominance)

A node X in the CFG dominates a node Y if every path from entry to Y
contains X. Write X > Y.

m Dominance is a partial order

m Dominance is a tree order: For every X, Y, Z with X > Zand Y > Z
holds X > Y or Y > X

m Strict dominance: X > Y =X>YAX#Y

m Immediate/direct dominator: idom(Z) = X with
X>ZANAY X>Y>Z

14

Dominance Frontiers
Efficiently computing SSA. .. [Cytron et al. 1991]

Definition (Dominance Frontier)

DF(X)={Y | X # Y A (3Z predecessor of Y : X > Z}

m DFt(X) is the least fixed point S of S = DF(X US)

B Theorem:

DFT(X) = J(X U {root})

m Proof Sketch:

1.

> w

Show that for every path p: X > Z there is a node in {X} U DF*(X)
on p that dominates Z

Show that the convergence point Z of two paths X = Z,Y 5 Z is
contained in DF*(X) U DF*(Y)

Using this, we can show that J(S) C DF*(S)

Show DF(S) C J(S) for root € S

Using induction on DF’ show that DF*(S) C J(S)

15

Dominance Frontiers

Definition (Dominance Frontier)

DF(X)={Y | X # Y A (3Z predecessor of Y : X > Z}

m Can be efficiently computed by a bottom up traversal over the
dominance tree:

1. Each CF-successor Z of X is either dominated by X or not

2. if not, it is in the dominance frontier of X

3. if yes, look at the dominance frontier of Z: All Y € DF(Z) not
dominated by X are also in DF(X)

DF(X) = {Y successor of X | X # Y}
U |J {YeDF2)|x2Y}

X=idom(Z)

16

SSA Construction

Cytron et al.

1. Compute dominance tree

2. Compute iterated dominance frontiers DF (X)) for all definitions of
each variable

3. Rename variables

- Every use takes lowest definition in the dominance tree
- Note that ¢-function uses happen at the end of the predecessors
- First lemma of proof sketch guarantees that this definition is available

17

