Bottom-Up Syntax Analysis

Sebastian Hack
(based on slides by Reinhard Wilhelm and Mooly Sagiv)

http://compilers.cs.uni-saarland.de

Compiler Construction Core Course 2017
Saarland University


http://compilers.cs.uni-saarland.de

e Functionality and Method
e Example Parsers

e Derivation of a Parser

e Conflicts

e LR(k)-Grammars

e LR(1)-Parser Generation

e Precedence Climbing



Bottom-Up Syntax Analysis

Input: A stream of symbols (tokens)
Output: A syntax tree or error

Method: until input consumed or error do

shift next symbol or reduce by some production

decide what to do by looking k symbols ahead

Properties: Constructs the syntax tree in a

bottom-up manner

Finds the rightmost derivation
(in reversed order)

Reports error as soon as the already read part of
the input is not a prefix of a program
(valid prefix property)



Parsing aabb in the grammar G, with S — aSb|e

Stack | Input | Action Dead ends

$ aabb# | shift reduce S — ¢

$a abb# | shift reduce S — ¢

$aa bb# reduce S — ¢ shift

$aaS | bb# shift reduce S — ¢

$aaSh | b# reduce S — aSb | shift,reduce S — ¢

$aS b# shift reduce S — ¢

$aSb | # reduce S — aSh | reduce S — ¢

$S # accept reduce S — ¢
Issues:

e Shift vs. Reduce
e Reduce A — 3, Reduce B — af3



Parsing aa in the grammar S — AB,S - A/A— a,B— a

Stack | Input | Action Dead ends
$ aa# | shift
$a reduce A — a | reduce B — 3, shift

a#t

$A a# shift reduce S — A
$Aa # reduce B — a reduce A — a
$AB | # reduce S — AB
$S # accept

Issues:

e Shift vs. Reduce
e Reduce A — (3, Reduce B — af3



Shift-Reduce Parsers

e The bottom—up Parser is a shift-reduce parser, each step is a
shift: consuming the next input symbol or
reduction: reducing a suffix of the stack contents by some
production.
e problem is to decide when to stop shifting and make a
reduction
e a next right side to reduce is called a handle if

reducing too early leads to a dead end,
reducing too late buries the handle



LR-Parsers — Deterministic Shift—Reduce Parsers

Parser decides whether to shift or to reduce based on

e the contents of the stack and

e k symbols lookahead into the rest of the input

Property of the LR—Parser: it suffices to consider the topmost
state on the stack instead of the whole stack contents.



From P; to LR—Parsers for G

e P¢ has non-deterministic choice of expansions,

e |l —parsers eliminate non—determinism by looking ahead at

expansions,

e LR—parsers pursue all possibilities in parallel
(corresponds to the subset—construction in NFSM — DFSM).

Derivation:

1. Characteristic finte-state machine of G, a description of Pg
2. Make deterministic

3. Interpret as control of a push down automaton

4

. Check for “inedaquate” states



Characteristic Finite-State Machine of G

...is a NFSM ch(G) = (Qc, Ve, Ac, qc, Fe):

e states are the items of G

Qc = ItG
e input alphabet are terminals and non-terminals
V.= V57U Vy

e start state g = [S' — .5]
e final states are the complete items
Fe={[X —- a] | X > a€P}
e Transitions:
A ={([X = a.YBLY,[X = aY[])| X - aYB € P and
Y e Vyu VT}
U{([X — «.YB],e Y — ]| X — aYp e P and
Y - veP}



Item PDA and Characteristic NFA

for G,p: S — aSb|e and ch(G,p)

Stack Input | New Stack
[S" —.5] € [S" — .S][S — .aSbh]
[ —.9] € [8" = .S][S— ]
[S — .aSh] a [S — a.5b]
[S — a.5b] € [S — a.5b][S — .aSh]
[S — a.5Sb] € [S — a.5b][S — ]
[S — aS.hp] b [S — aShb.]
[S — a.5b][S — ] € [S — aS.bp]
[S — a.Sb][S — aSh.] | € [S — aS.b]
[S" — .S][S — aSb.] € [S"— S]
[ — .S][S — ] € [S"— S]]
S
S—=.S5 —=[—>5]
e[ s hh] — =[S aSh —=[5—aSh] ——>

[S—]

N S

[S — aSb.]



Characteristic NFSM for G,

S — E,

™

IV

IV

=

E - E+T|T, T = T«F|F, F — (E)|id
[S — .E] é [S— E]
& €]
1o . ]
[E—.E+T] = [E—E.+T] [ESE+.T] = [E—=E+T]
&‘WE l
[E=.T] = [E=T]
S 10%%
* F
[T—.T«xF] = [To>T.xF] = [T—Tx.Fl = [T—TxF]
E\Wa ‘
[T—=.F] = [T—=F]
gwg [
I
E
[F— (E)] ¥ [F=(E] = [F—>(E) ; [F—(E)]
id
[F — .id] = [F—id]

10



Interpreting ch(G)

State of ch(G) is the current state of Pg, i.e. the state on top of
P¢'s stack. Adding actions to the transitions and states of ch(G)
to describe Pg:

e—transitions: push new state of ch(G) onto stack of Pg: new
current state.

reading transitions: shifting transitions of Pg: replace current
state of Pg by the shifted one.
final state: Correspond to the following actions in Pg:

e pop final state [X — «.] from the stack,

e do a transition from the new topmost state
under X,

e push the new state onto the stack.

11



Handles and Viable Prefixes

Some Abbreviations:
RMD: rightmost derivation
RSF: right sentential form

Consider a RMD of cfg G:

s r:;> BXu —> Bau

e « is a handle of Sau.
The part of a RSF next to be reduced.

e Each prefix of S« is a viable prefix.
A prefix of a RSF stretching at most up to the end of the
handle, i.e. reductions if possible then only at the end.

12



Examples in Gy

RSF (handle) | viable prefix Reason

E+F E,E+, E+F |S—E— E+T = E+F
rm rm rm

T «id T, T*, Txid | S = T+«F — T «id
rm rm

F «id F S Txid — Fxid
rm rm

T «id + id T, T+, Txid | S = T+F — T id
rm rm

13



[X — «.f] isvalid for the viable prefix vy, if there exists a RMD
s r::f yXw —> ~yafw

An item valid for a viable prefix gives one interpretation of the
parsing situation.

Some viable prefixes of Gp:

Valid Items

Vlab.le Valid Items Reason ¥ w | X | B
Prefix
E+ [E > E+.T] | S=— E— E+T € € E | E+
[T — .F] S E+T—=—E+F |E+ |c | T|e F
[F — .id] S E4+F— E+id | E+ € F | ¢ id
rm rm
(E+( | [F = (E)] S— (E+F) (E+ ) | F | ( E)
= (E+(E))
rm

14



Valid Items and Parsing Situations

Given some input string xuvw.

The RMD
S = A Xw = yafw = yavw = Yuvw = Xuvw
rm rm rm rm rm

describes the following sequence of partial derivations:

’y:>* X a = u 6% v X = af
rm rm rm rm

S = v Xw
rm

performed by the bottom-up parser in this order.

The valid item [X — « . (] for the viable prefix ya describes the
situation after partial derivation 2, that is, for RSF yavw

5]



Theorems

Ch(G) = (QC) VC)A67q67 FC)
Theorem

For each viable prefix there is at least one valid item.

Every parsing situation is described by at least one valid item.
Theorem

Letv € (VT U VN)" and g € Qc. (9e,7) b, (a,6) iffyis a
viable prefix and q is a valid item for -.

A viable prefix brings ch(G) from its initial state to all its valid
items.
Theorem

The language of viable prefixes of a cfg is regular.

16



Making ch(G) deterministic

Apply NFSM — DFSM to ch(G): Result LRy(G).

Example: ch(G,p)

S
[ >.8 —= [ >8]

4

e[ 5o hSh] —= [ asSh ——>[S—aSh] ——>
N S
[S—] c
LRo(Gab)Z

[S — aSh.]

17



Characteristic NFSM for G,

S — E,

™

™

IV

=

E - E+T|T, T = T«F|F, F — (E)|id
[S — .E] é [S—=E]
& €]
1o ]
[E—>.E+T] = [E—E.+T] [ESE+.T] = [E—-E+T]
EW& 1
[E-.T] = [E=T]
VW
* F
[T—.TxF] = [To>T.xF] = [T—Tx.Fl = [T—TxF]
E\WE ‘
[T—=.F] = [T—=F]
gwe [
[
E
[F—(E)] g F=(E] = [F>(E) ; [F—(E)]
&
id
[F — .id] = [F—id]

18



S —-E, E — E4+T|T, T —- TxF|F, F — (E)|id

19



The States of LRy(Gp) as Sets of Items

S ={ [ — .E], S ={ [F — id]}
[E —» .E+T],
[E — .T], S ={ [E — E+.T],
[T — .TxF], [T — .T=xF],
[T — .F], [T — .F],
[F — (E)], [F — (E)],
[F — .id]} [F — .id]}
S ={ [s — E] S ={ [T — T=x.F],
[E - E.+T]} [F — (BE)],
[F — .id]}
S ={ [E — T], Ss ={ [F — (E)],
[T - T.xF]} [E — E.+TJ}
S ={ [T = F]} S ={ [E > E+T]
[T — T.+F]}
Se ={ [F = (B)], S ={ [T = Tx*F]}
[E — .E+T],
[E — .T], Su ={ [F = (B)]}
[T — .Tx*F]
[T — .F]
[F — (E)]

20
[F — .id]}



Theorems

Ch(G) - (Qm VCaACa dc, Fc) and LRO(G) = (Qd, VN ) VT7 Ay dd, Fd)
Theorem

Let y be a viable prefix and p(y) € Qq be the uniquely determined
state, into which LRy(G) transfers out of the initial state by reading -,

*

i'e" (qd7FY) l_LRO(G) (p(’Y)?E) Then

(a) p(e) = qq

(b) P = {7 € Qe | () Ky (6:)}
(c) p(y)={i€ Itg | i valid for v}
(d)

d) Let T the (in general infinite) set of all viable prefixes of G.

The mapping p: T — Qg defines a finite partition on T.

(e) L(LRo(G)) is the set of viable prefixes of G that end in a handle.

21



v = E + F is a viable prefix of Gy. With the state p(vy) = Sz are
also associated:

F, (F, ((F, (((F,...

T+(F, Tx((F, T=(((F,...

E+F, E+(F, E4+((F,...

Consider Sg in LRy(Gp). It consists of all valid items for the viable
prefix E+, i.e., the items
[E - E+.T),[T = .TxF],[T — .F|,[F — .id],[F — .(E)].

Reason:

E+ is prefix of the RSF E+ T ;
SﬁEﬁ E+ T ﬁ E+F ﬁ E+id

T T T are
Therefore [E — E+.T] [T — .F] [F — .id]
valid. 22



What the LRy(G) describes

LRy(G) interpreted as a PDA Po(G) = (I, V7, A, qo, {gr})

o [ (stack alphabet): the set Qg of states of LRy(G).

e go = qg (initial state): in the stack of Py(G) initially.

o gr = {[S' — S.]} the final state of LRy(G),

o ACT*x (VrU{e})xT* (transition relation):
Defined as follows:

23



LRy(G)’s Transition Relation

shift: (g, a,q04(q,a)) € A, if §4(q, a) defined.

Read next input symbol a and push successor state
of g under a (item [X — ---.a---] €q).

reduce: (g q1...qn¢,q04(q, X)) € A,
if [ X — a]€qgn, |af =n.
Remove || entries from the stack.
Push the successor of the new topmost state under X
onto the stack.

Note the difference in the stacking behavior:

e the Item PDA P¢ keeps on the stack only one item for each
production under analysis,

e the PDA described by the LRy(G) keeps |« states on the
stack for a production X — «f3 represented with item
X — a.f] 24



Reduction in PDA P;(G)

{ X = al] }

25



Some observations and recollections

e also works for reductions of ¢,
e cach state has a unique entry symbol,
e the stack contents uniquely determine a viable prefix,

e current state (topmost) is the state associated with this viable
prefix,

e current state consists of all items valid for this viable prefix.

26



Non-determinism in Py(G)

Po(G) is non-deterministic if either

Shift—-reduce conflict: There are shift as well as reduce
transitions out of one state, or

Reduce—reduce conflict: There are more than one reduce

transitions from one state.

States with a shift-reduce conflict have at least one read item
[X — «.af] and at least one complete item
[Y = ~v.]

States with a reduce-reduce conflict have at least two
complete items [Y — «a.], [Z — B.].

A state with a conflict is inadequate.

27



Some Inadequate States

LRy(Go) has three inadequate states, Sy, S and Sg.

51:

52:

591

Can reduce E to S (complete item [S — E.])
or read "+" (shift-item [E — E.+ T]);

Can reduce T to E (complete item [E — T.])
or read "x" (shift-item [T — T.x F]);

Can reduce E + T to E (complete item [E — E + T.])
or read "x" (shift-item [T — T.=x F]).
28



Adding Lookahead

o LR(k) item [X — aj.00,L]

if X — ajas € Pand L C V%é(E
e LR(0) item [X — «j.ap] is called core of [X — aj.ap, L]
e lookahead set L of [X — .0, L]

e [X — «aj.ap,L]is valid for a viable prefix ayy if
S'4 = aXw = aqiasw
rm rm
and
L={u|S# = aXw = acjaow and u=k:w}
rm rm

The context—free items can be regarded as LR(0)-items if
[X — ai.ao,{ec}] is identified with [X — aq.a2].

29



Example from Gy

1. [E - E+.T.,{),+,#}] is a valid LR(1)-item for (E+
2. [E — T.,{«}] is not a valid LR(1)-item for any viable prefix

Reasons:

1. 8= (E) = (E+ T) = (E+ T +id) where
a=( a1 =E+, ap =T, u=+, w = +id)

2. The string Ex can occur in no RMD.

30



Take their decisions (to shift or to reduce) by consulting

e the viable prefix v in the stack, actually the by v uniquely
determined state (on top of the stack),

e the next k symbols of the remaining input.
e Recorded in an action-table.

e The entries in this table are:

shift: read next input symbol;

reduce (X — «): reduce by production X — «;
error: report error

accept: report successful termination.

A goto—table records the transition function of characteristic
automaton

31



The action— and the goto—table

action-table goto-table
VT%;‘ Vy U Vr
u X
Q parser action Qg 54(q, X)
9 for (g, u)

32



Parser Table for S — aSb|e

Action table
state| sets of items symbols
b #
[ —.5],
0 { [S — .aSh], } r(S —e)
[5— 1}
[S — a.5b],
1 { [S — .aSh], } r(S —€)
[s— 1}
2 | {[S— aS.b]} s
3 | {[S — aSb.]} r(S — aSb) | r(S — aSh)
4 | {[S'—=S]} accept

Goto table
state symbol
a|b|#|S

0 1 4
1 1 2
2 3

3

4

83




Parsing aabb

Stack Input | Action
$0 aabb# | shift 1
$01 abb# | shift 1

$011 bb# reduce S — ¢
$0112 | bb# | shift3
$01123 | b# reduce S — aSh
$012 | b# | shift3

$0123 | # reduce S — aSh
$04 # accept

34



Algorithm LR(1)-PARSER

type state = set of item;
var Jookahead: symbol;
(* the next not yet consumed input symbol x)
S : stack of state;
proc scan;
(* reads the next symbol into lookahead x)
proc acg;
(* report successful parse; halt x)
proc err( message: string);
(* report error; halt x)

85



scan; push(S, qq4);
forever do
case action[top(S), lookahead| of
shift: begin push(S, goto[top(S), lookahead]);
scan
end ;
reduce (X — «) : begin
pop!®!(S); push(S, goto[top(S), X]);
output("X — ")

end ;
accept: acg;
error:  err("...");
end case
od

36



LR(1)—Conflicts

Set of LR(1)-items / has a

shift-reduce-conflict:
if exists at least one item [X — «.af,L1] €/
and at least one item [Y — ~., L] €/,
and if a € Ls.

reduce-reduce-conflict:
if it contains at least two items [X — a., L]
and [Y — f., L] where Ly N Ly # 0.

A state with a conflict is called inadequate.

37



Example from Gy

S¢= Closure(Start) S¢= Closure(Succ(S;,+))
={[Ss = .E,{#}] ={lE = E+.T,{# +}],
[E — .E+ T,{# +}], [T — . TxF {# +,+}],
[E — T {# +}], [T — F{#, +,+}],
[T — .Tx*F {# +,+}], [F — (E), {# + *}],
[T — F.{# +,*}], [F — .id, {#,+,*}] }
[F — (E), {#, +,+}],
[F — .id, {#,+,%}] } Sé: Closure(Succ(Sé,T))
={lE — E+ T . {# +},
S{=Closure(Succ(S}, E)) [T — T.xF,{#,+,%}] }
={[s = E. {#}]

[E = E.+T,{#+}] }

S)=Closure(Succ(S}, T))
={[E = T, {#+}],
[T — T.xF {# +,%}] }

Inadequate LR(0)—states Si, Sp und Sy are adequate after adding lookahead sets.
5{ shifts under "+", reduces under "#".

Sé shifts under "x", reduces under "#" and "+",
56 shifts under "x", reduces under "#" and "+". 38



Operator Precedence Parsing

Gp encodes operator precedence and associativity and used
lookahead in an LR(1) parser to disambiguate.

Idea: Use ambiguous grammar Gg:
E - E+E|ExE|id]|(E)

and operator precedence and associativity to disambiguate directly.

39



Deterministic ch(G/)

...contains two states:

S:E — E+E. Ss: E — ExE.
E —- E.+E E — E.+E
E — E.xE E — E.xE

with shift reduce conflicts.

In both states, the parser can reduce or shift either + or x.

40



ch(G{) conflicts in detail

e Consider the input id + id * id
and let the top of the stack be 57.

e |f reduce, then + has higher precendence than %
e |[f shift, then + has lower precendence than x

e Consider the input id + id + id
and let the top of the stack be 5.

e |f reduce, + is left-associative
e If shift, + is right-associative

41



Simple Implementation for Expression Parser

e Model precedence/assoc with left and right precedence
e Shift/reduce mechanism implemented with loop and recursion:

Expression parseExpression(Precedence precedence) {
Expression expr = parsePrimary();
for (;;) {
TokenKind kind = currToken.getKind();

// if operator in lookahead has less left precedence: reduce
if (kind.getLPrec() < precedence)
return expr;
// else shift
nextToken ();

// and parse other operand with right precedence

Expression right = parseExpression(kind.getRPrec());

expr = factory.createBinaryExpression(t, expr, right);
}

return expr;



