
Bottom-Up Syntax Analysis

Sebastian Hack

(based on slides by Reinhard Wilhelm and Mooly Sagiv)

http://compilers.cs.uni-saarland.de

Compiler Construction Core Course 2017

Saarland University

http://compilers.cs.uni-saarland.de

Topics

• Functionality and Method

• Example Parsers

• Derivation of a Parser

• Conflicts

• LR(k)–Grammars

• LR(1)–Parser Generation

• Precedence Climbing

1

Bottom-Up Syntax Analysis

Input: A stream of symbols (tokens)

Output: A syntax tree or error

Method: until input consumed or error do

• shift next symbol or reduce by some production

• decide what to do by looking k symbols ahead

Properties: • Constructs the syntax tree in a

bottom-up manner

• Finds the rightmost derivation

(in reversed order)

• Reports error as soon as the already read part of

the input is not a prefix of a program

(valid prefix property)

2

Parsing aabb in the grammar Gab with S → aSb|ǫ

Stack Input Action Dead ends

$ aabb# shift reduce S → ǫ

$a abb# shift reduce S → ǫ

$aa bb# reduce S → ǫ shift

$aaS bb# shift reduce S → ǫ

$aaSb b# reduce S → aSb shift, reduce S → ǫ

$aS b# shift reduce S → ǫ

$aSb # reduce S → aSb reduce S → ǫ

$S # accept reduce S → ǫ

Issues:

• Shift vs. Reduce

• Reduce A → β, Reduce B → αβ
3

Parsing aa in the grammar S → AB, S → A, A → a, B → a

Stack Input Action Dead ends

$ aa# shift

$a a# reduce A → a reduce B → a, shift

$A a# shift reduce S → A

$Aa # reduce B → a reduce A → a

$AB # reduce S → AB

$S # accept

Issues:

• Shift vs. Reduce

• Reduce A → β, Reduce B → αβ

4

Shift-Reduce Parsers

• The bottom–up Parser is a shift–reduce parser, each step is a

shift: consuming the next input symbol or

reduction: reducing a suffix of the stack contents by some

production.

• problem is to decide when to stop shifting and make a

reduction

• a next right side to reduce is called a handle if

reducing too early leads to a dead end,

reducing too late buries the handle

5

LR-Parsers – Deterministic Shift–Reduce Parsers

Parser decides whether to shift or to reduce based on

• the contents of the stack and

• k symbols lookahead into the rest of the input

Property of the LR–Parser: it suffices to consider the topmost

state on the stack instead of the whole stack contents.

6

From PG to LR–Parsers for G

• PG has non-deterministic choice of expansions,

• LL–parsers eliminate non–determinism by looking ahead at

expansions,

• LR–parsers pursue all possibilities in parallel

(corresponds to the subset–construction in NFSM → DFSM).

Derivation:

1. Characteristic finte-state machine of G , a description of PG

2. Make deterministic

3. Interpret as control of a push down automaton

4. Check for “inedaquate” states

7

Characteristic Finite-State Machine of G

. . . is a NFSM ch(G) = (Qc , Vc , ∆c , qc , Fc):

• states are the items of G

Qc = ItG

• input alphabet are terminals and non-terminals

Vc = VT ∪ VN

• start state qc = [S ′ → .S]

• final states are the complete items

Fc = {[X → α.] | X → α ∈ P}

• Transitions:

∆c = {([X → α.Y β], Y , [X → αY .β]) | X → αY β ∈ P and

Y ∈ VN ∪ VT }

∪ {([X → α.Y β], ε, [Y → .γ]) | X → αY β ∈ P and

Y → γ ∈ P}

8

Item PDA and Characteristic NFA

for Gab: S → aSb|ǫ and ch(Gab)

Stack Input New Stack

[S′ → .S] ǫ [S′ → .S][S → .aSb]

[S′ → .S] ǫ [S′ → .S][S → .]

[S → .aSb] a [S → a.Sb]

[S → a.Sb] ǫ [S → a.Sb][S → .aSb]

[S → a.Sb] ǫ [S → a.Sb][S → .]

[S → aS.b] b [S → aSb.]

[S → a.Sb][S → .] ǫ [S → aS.b]

[S → a.Sb][S → aSb.] ǫ [S → aS.b]

[S′ → .S][S → aSb.] ǫ [S′ → S.]

[S′ → .S][S → .] ǫ [S′ → S.]

[S → a.Sb][S → .aSb]

[S’ → . S]
S

a S
ǫ

ǫ

[S’ → S.]

ǫ

ǫ [S → aSb.]

[S → .]

[S → aS.b]
b

9

Characteristic NFSM for G0

S → E , E → E +T | T , T → T ∗F | F , F → (E) | id

ε

ε

ε

ε

)

id

(

F

ε

T

ε ε
ε

ε
ε

ε
T

[E → E + T .]

[T → T ∗ F .]
F

[S → E .]
E

[S → .E]

[E → .E + T]
E

[E → E . + T]
+

T

[E → T .][E → .T]

ε

ε

[T → .F]

ε

ε

[F → .(E)]

[F → .id] [F → id.]

[F → (.E)]
E

[F → (E .)] [F → (E).]

[T → T ∗ .F][T → T . ∗ F]
∗

[E → E + .T]

ε

[T → .T ∗ F]

[T → F .]

10

Interpreting ch(G)

State of ch(G) is the current state of PG , i.e. the state on top of

PG ’s stack. Adding actions to the transitions and states of ch(G)

to describe PG :

ε–transitions: push new state of ch(G) onto stack of PG : new

current state.

reading transitions: shifting transitions of PG : replace current

state of PG by the shifted one.

final state: Correspond to the following actions in PG :

• pop final state [X → α.] from the stack,

• do a transition from the new topmost state

under X ,

• push the new state onto the stack.

11

Handles and Viable Prefixes

Some Abbreviations:

RMD: rightmost derivation

RSF: right sentential form

Consider a RMD of cfg G:

S ′ ∗
=⇒
rm

βXu =⇒
rm

βαu

• α is a handle of βαu.

The part of a RSF next to be reduced.

• Each prefix of βα is a viable prefix.

A prefix of a RSF stretching at most up to the end of the

handle, i.e. reductions if possible then only at the end.

12

Examples in G0

RSF (handle) viable prefix Reason

E + F E , E+, E + F S =⇒
rm

E =⇒
rm

E + T =⇒
rm

E + F

T ∗ id T , T∗, T ∗ id S
3

=⇒
rm

T ∗ F =⇒
rm

T ∗ id

F ∗ id F S
4

=⇒
rm

T ∗ id =⇒
rm

F ∗ id

T ∗ id + id T , T∗, T ∗ id S
3

=⇒
rm

T ∗ F =⇒
rm

T ∗ id

13

Valid Items

[X → α.β] is valid for the viable prefix γα, if there exists a RMD

S ′ ∗
=⇒
rm

γXw =⇒
rm

γαβw

An item valid for a viable prefix gives one interpretation of the

parsing situation.

Some viable prefixes of G0:
Viable

Prefix
Valid Items Reason γ w X α β

E+ [E → E + .T] S =⇒
rm

E =⇒
rm

E + T ε ε E E+ T

[T → .F] S
∗

=⇒
rm

E + T =⇒
rm

E + F E+ ε T ε F

[F → .id] S
∗

=⇒
rm

E + F =⇒
rm

E + id E+ ε F ε id

(E + ([F → (.E)] S
∗

=⇒
rm

(E + F) (E+) F (E)

=⇒
rm

(E + (E))

14

Valid Items and Parsing Situations

Given some input string xuvw .

The RMD

S ′ ∗
=⇒
rm

γXw =⇒
rm

γαβw
∗

=⇒
rm

γαvw
∗

=⇒
rm

γuvw
∗

=⇒
rm

xuvw

describes the following sequence of partial derivations:

γ
∗

=⇒
rm

x α
∗

=⇒
rm

u β
∗

=⇒
rm

v X =⇒
rm

αβ

S ′ ∗
=⇒
rm

γXw

performed by the bottom-up parser in this order.

The valid item [X → α . β] for the viable prefix γα describes the

situation after partial derivation 2, that is, for RSF γαvw

15

Theorems

ch(G) = (Qc , Vc , ∆c , qc , Fc)

Theorem

For each viable prefix there is at least one valid item.

Every parsing situation is described by at least one valid item.

Theorem

Let γ ∈ (VT ∪ VN)∗ and q ∈ Qc . (qc , γ) ⊢
∗

ch(G)
(q, ε) iff γ is a

viable prefix and q is a valid item for γ.

A viable prefix brings ch(G) from its initial state to all its valid

items.

Theorem

The language of viable prefixes of a cfg is regular.

16

Making ch(G) deterministic

Apply NFSM → DFSM to ch(G): Result LR0(G).

Example: ch(Gab)

[S → a.Sb][S → .aSb]

[S’ → . S]
S

a S
ǫ

ǫ

[S’ → S.]

ǫ

ǫ [S → aSb.]

[S → .]

[S → aS.b]
b

LR0(Gab):

17

Characteristic NFSM for G0

S → E , E → E +T | T , T → T ∗F | F , F → (E) | id

ε

ε

ε

ε

)

id

(

F

ε

T

ε ε
ε

ε
ε

ε
T

[E → E + T .]

[T → T ∗ F .]
F

[S → E .]
E

[S → .E]

[E → .E + T]
E

[E → E . + T]
+

T

[E → T .][E → .T]

ε

ε

[T → .F]

ε

ε

[F → .(E)]

[F → .id] [F → id.]

[F → (.E)]
E

[F → (E .)] [F → (E).]

[T → T ∗ .F][T → T . ∗ F]
∗

[E → E + .T]

ε

[T → .T ∗ F]

[T → F .]

18

LR0(G0)

S → E , E → E +T | T , T → T ∗F | F , F → (E) | id

S10S7S2

S4 S11S8

S9S6

S3

S5

S1

S0

T
T

(

(

F

id

id

F

id

)

(

∗ F

∗

+ T

E

E

F

+

(id

19

The States of LR0(G0) as Sets of Items

S0 = { [S → .E], S5 = { [F → id.]}

[E → .E + T],

[E → .T], S6 = { [E → E + .T],

[T → .T ∗ F], [T → .T ∗ F],

[T → .F], [T → .F],

[F → .(E)], [F → .(E)],

[F → .id]} [F → .id]}

S1 = { [S → E .], S7 = { [T → T ∗ .F],

[E → E . + T]} [F → .(E)],

[F → .id]}

S2 = { [E → T .], S8 = { [F → (E .)],

[T → T . ∗ F]} [E → E . + T]}

S3 = { [T → F .]} S9 = { [E → E + T .],

[T → T . ∗ F]}

S4 = { [F → (.E)], S10 = { [T → T ∗ F .]}

[E → .E + T],

[E → .T], S11 = { [F → (E).]}

[T → .T ∗ F]

[T → .F]

[F → .(E)]

[F → .id]}
20

Theorems

ch(G) = (Qc , Vc , ∆c , qc , Fc) and LR0(G) = (Qd , VN ∪ VT , ∆, qd , Fd)

Theorem

Let γ be a viable prefix and p(γ) ∈ Qd be the uniquely determined

state, into which LR0(G) transfers out of the initial state by reading γ,

i.e., (qd , γ) ⊢
∗

LR0(G)
(p(γ), ε). Then

(a) p(ε) = qd

(b) p(γ) = {q ∈ Qc | (qc , γ) ⊢
∗

ch(G)
(q, ε)}

(c) p(γ) = {i ∈ ItG | i valid for γ}

(d) Let Γ the (in general infinite) set of all viable prefixes of G.

The mapping p : Γ → Qd defines a finite partition on Γ.

(e) L(LR0(G)) is the set of viable prefixes of G that end in a handle.

21

G0

γ = E + F is a viable prefix of G0. With the state p(γ) = S3 are

also associated:

F , (F , ((F , (((F , . . .

T ∗ (F , T ∗ ((F , T ∗ (((F , . . .

E + F , E + (F , E + ((F , . . .

Consider S6 in LR0(G0). It consists of all valid items for the viable

prefix E+, i.e., the items

[E → E + .T], [T → .T ∗ F], [T → .F], [F → .id], [F → .(E)].

Reason:

E+ is prefix of the RSF E + T ;

S =⇒
rm

E =⇒
rm

E + T =⇒
rm

E + F =⇒
rm

E + id

↑ ↑ ↑

Therefore [E → E + .T] [T → .F] [F → .id]

are

valid. 22

What the LR0(G) describes

LR0(G) interpreted as a PDA P0(G) = (Γ, VT , ∆, q0, {qf })

• Γ (stack alphabet): the set Qd of states of LR0(G).

• q0 = qd (initial state): in the stack of P0(G) initially.

• qf = {[S ′ → S.]} the final state of LR0(G),

• ∆ ⊆ Γ∗ × (VT ∪ {ε}) × Γ∗ (transition relation):

Defined as follows:

23

LR0(G)’s Transition Relation

shift: (q, a, q δd(q, a)) ∈ ∆, if δd(q, a) defined.

Read next input symbol a and push successor state

of q under a (item [X → · · · .a · · ·] ∈ q).

reduce: (q q1 . . . qn, ε, q δd(q, X)) ∈ ∆,

if [X → α.] ∈ qn, |α| = n.

Remove |α| entries from the stack.

Push the successor of the new topmost state under X

onto the stack.

Note the difference in the stacking behavior:

• the Item PDA PG keeps on the stack only one item for each

production under analysis,

• the PDA described by the LR0(G) keeps |α| states on the

stack for a production X → αβ represented with item

[X → α.β] 24

Reduction in PDA P0(G)

X

α

[X → α.]

· · ·

· · ·

[· · · → · · · X . · · ·]

· · ·

[X → .α]

[· · · → · · · .X · · ·]

25

Some observations and recollections

• also works for reductions of ǫ,

• each state has a unique entry symbol,

• the stack contents uniquely determine a viable prefix,

• current state (topmost) is the state associated with this viable

prefix,

• current state consists of all items valid for this viable prefix.

26

Non-determinism in P0(G)

P0(G) is non-deterministic if either

Shift–reduce conflict: There are shift as well as reduce

transitions out of one state, or

Reduce–reduce conflict: There are more than one reduce

transitions from one state.

States with a shift–reduce conflict have at least one read item

[X → α .a β] and at least one complete item

[Y → γ.].

States with a reduce–reduce conflict have at least two

complete items [Y → α.], [Z → β.].

A state with a conflict is inadequate.

27

Some Inadequate States

S10S7S2

S4 S11S8

S9S6

S3

S5

S1

S0

T
T

(

(

F

id

id

F

id

)

(

∗ F

∗

+ T

E

E

F

+
(id

LR0(G0) has three inadequate states, S1, S2 and S9.

S1: Can reduce E to S (complete item [S → E .])

or read ”+” (shift–item [E → E . + T]);

S2: Can reduce T to E (complete item [E → T .])

or read ”∗” (shift-item [T → T . ∗ F]);

S9: Can reduce E + T to E (complete item [E → E + T .])

or read ”∗” (shift–item [T → T . ∗ F]).

28

Adding Lookahead

• LR(k) item [X → α1.α2, L]

if X → α1α2 ∈ P and L ⊆ V ≤k
T#

• LR(0) item [X → α1.α2] is called core of [X → α1.α2, L]

• lookahead set L of [X → α1.α2, L]

• [X → α1.α2, L] is valid for a viable prefix αα1 if

S ′#
∗

=⇒
rm

αXw =⇒
rm

αα1α2w

and

L = {u | S ′#
∗

=⇒
rm

αXw =⇒
rm

αα1α2w and u = k : w}

The context–free items can be regarded as LR(0)-items if

[X → α1.α2, {ε}] is identified with [X → α1.α2].

29

Example from G0

1. [E → E + .T , {), +, #}] is a valid LR(1)–item for (E+

2. [E → T ., {∗}] is not a valid LR(1)-item for any viable prefix

Reasons:

1. S ′ ∗
=⇒
rm

(E) =⇒
rm

(E + T)
∗

=⇒
rm

(E + T + id) where

α = (, α1 = E+, α2 = T , u = +, w = +id)

2. The string E∗ can occur in no RMD.

30

LR–Parser

Take their decisions (to shift or to reduce) by consulting

• the viable prefix γ in the stack, actually the by γ uniquely

determined state (on top of the stack),

• the next k symbols of the remaining input.

• Recorded in an action–table.

• The entries in this table are:

shift: read next input symbol;

reduce (X → α): reduce by production X → α;

error: report error

accept: report successful termination.

A goto–table records the transition function of characteristic

automaton

31

The action– and the goto–table

action-table goto-table

V
≤k

T#
VN ∪ VT

Q

u

q
parser action

for (q, u)

Q

X

q δd(q, X)

32

Parser Table for S → aSb|ǫ

Action table Goto table

state sets of items symbols

a b #

0

{

[S′ → .S],

[S → .aSb],

[S → .]}

}

s r(S → ǫ)

1

{

[S → a.Sb],

[S → .aSb],

[S → .]}

}

s r(S → ǫ)

2 {[S → aS.b]} s

3 {[S → aSb.]} r(S → aSb) r(S → aSb)

4 {[S′ → S.]} accept

state symbol

a b # S

0 1 4

1 1 2

2 3

3

4

33

Parsing aabb

Stack Input Action

$ 0 aabb# shift 1

$ 0 1 abb# shift 1

$ 0 1 1 bb# reduce S → ǫ

$ 0 1 1 2 bb# shift 3

$ 0 1 1 2 3 b# reduce S → aSb

$ 0 1 2 b# shift 3

$ 0 1 2 3 # reduce S → aSb

$ 0 4 # accept

34

Algorithm LR(1)–PARSER

type state = set of item;

var lookahead: symbol;

(∗ the next not yet consumed input symbol ∗)

S : stack of state;

proc scan;

(∗ reads the next symbol into lookahead ∗)

proc acc;

(∗ report successful parse; halt ∗)

proc err(message: string);

(∗ report error; halt ∗)

35

scan; push(S, qd);

forever do

case action[top(S), lookahead] of

shift: begin push(S, goto[top(S), lookahead]);

scan

end ;

reduce (X → α) : begin

pop|α|(S); push(S, goto[top(S), X]);

output(”X → α”)

end ;

accept: acc;

error: err("...");

end case

od

36

LR(1)–Conflicts

Set of LR(1)-items I has a

shift-reduce-conflict:

if exists at least one item [X → α.aβ, L1] ∈ I

and at least one item [Y → γ., L2] ∈ I,

and if a ∈ L2.

reduce-reduce-conflict:

if it contains at least two items [X → α., L1]

and [Y → β., L2] where L1 ∩ L2 6= ∅.

A state with a conflict is called inadequate.

37

Example from G0

S′
0= Closure(Start)

= {[S → .E , {#}]

[E → .E + T , {#, +}],

[E → .T , {#, +}],

[T → .T ∗ F , {#, +, ∗}],

[T → .F , {#, +, ∗}],

[F → .(E), {#, +, ∗}],

[F → .id, {#, +, ∗}] }

S′
1= Closure(Succ(S′

0, E))

= {[S → E ., {#}],

[E → E . + T , {#, +}] }

S′
2= Closure(Succ(S′

0, T))

= {[E → T ., {#, +}],

[T → T . ∗ F , {#, +, ∗}] }

S′
6= Closure(Succ(S′

1, +))

= {[E → E + .T , {#, +}],

[T → .T ∗ F , {#, +, ∗}],

[T → .F , {#, +, ∗}],

[F → .(E), {#, +, ∗}],

[F → .id, {#, +, ∗}] }

S′
9= Closure(Succ(S′

6, T))

= {[E → E + T ., {#, +}],

[T → T . ∗ F , {#, +, ∗}] }

Inadequate LR(0)–states S1, S2 und S9 are adequate after adding lookahead sets.

S′
1 shifts under ”+”, reduces under ”#”.

S′
2 shifts under ”∗”, reduces under ”#” and ”+”,

S′
9 shifts under ”∗”, reduces under ”#” and ”+”. 38

Operator Precedence Parsing

G0 encodes operator precedence and associativity and used

lookahead in an LR(1) parser to disambiguate.

Idea: Use ambiguous grammar G ′
0:

E → E + E | E ∗ E | id | (E)

and operator precedence and associativity to disambiguate directly.

39

Deterministic ch(G ′
0)

. . . contains two states:

S7 : E → E + E .

E → E . + E

E → E . ∗ E

S8 : E → E ∗ E .

E → E . + E

E → E . ∗ E

with shift reduce conflicts.

In both states, the parser can reduce or shift either + or ∗.

40

ch(G ′
0) conflicts in detail

• Consider the input id + id ∗ id

and let the top of the stack be S7.

• If reduce, then + has higher precendence than ∗

• If shift, then + has lower precendence than ∗

• Consider the input id + id + id

and let the top of the stack be S7.

• If reduce, + is left-associative

• If shift, + is right-associative

41

Simple Implementation for Expression Parser

• Model precedence/assoc with left and right precedence

• Shift/reduce mechanism implemented with loop and recursion:

Expression parseExpression (Precedence precedence) {

Expression expr = parsePrimary ();

for (;;) {

TokenKind kind = currToken . getKind ();

// if operator in lookahead has less left precedence : reduce

if (kind . getLPrec () < precedence)

return expr ;

// else shift

nextToken ();

// and parse other operand with right precedence

Expression right = parseExpression (kind . getRPrec ());

expr = factory . createBinaryExpression (t, expr , right);

}

return expr ;

} 42

