
computer science

saarland
university Compiler Construction (WS 2017/18)

Exercise Sheet 2
Compiler Design Lab

Prof. Dr. Sebastian Hack
Fabian Ritter, B.Sc.

Exercise 2.1 Push-Down Automata
Let (fS;A;B;C;D;H;Kg; fa; b; c; d; eg; P; S) be a context-free grammar with the following productions P :

S ! KA j BK

A ! abA j BcH j "

B ! eBd j c

C ! dAb j aa

D ! S j "

H ! CD

K ! cd

Write down a successful run of the push-down automaton constructed for this grammar (using the algorithms
presented in the lecture) on the input word cdeecddcaaccd.

Exercise 2.2 Grammar Ambiguity, Theory and Practice
Consider a grammar that captures a subset of the statements of C with starting non-terminal stmt and the following
productions (expression rules are omitted for brevity):

stmt ! expr;
j return expr;
j if (expr) stmt

j if (expr) stmt else stmt

j while (expr) stmt

j { stmt-seq }
stmt-seq ! stmt-seq stmt j stmt

expr ! : : :

1. Give an input token string which demonstrates that this grammar is ambiguous.

2. Adjust the grammar such that it becomes unambiguous (but still describes the same language as before).
Hint: Introduce new non-terminal symbols to group the different statements into categories and add slightly
modified duplicates of some of the productions.

3. Check how this ambiguity issue is treated in the C standard.

Exercise 2.3 LL(k)
A grammar is an LL(k)-grammar for some k 2 N if whenever there exist u; x; y 2 VT� with k : x = k : y; Y 2 VN
and �; �; 2 (VT [VN)

� such that

S
�

=)
lm

uY � =)
lm

u��
�

=)
lm

ux

S
�

=)
lm

uY � =)
lm

u�
�

=)
lm

uy

then � =

A language L is an LL(k)-language if there exists an LL(k)-grammar that generates L.

1. Prove that for each k 2 N there exists a grammar which is LL(k + 1) but not LL(k).

1

2. Prove that for each k 2 N an LL(k)-grammar is an LL(k + 1)-grammar.

3. Investigate the relationship between LL(0)-languages and regular languages. In particular provide the fol-
lowing information.

� fjxj j x 2 LL(0)g, where LL(0) is the set of all LL(0)-languages.

� fjxj j x 2 Lregg, where Lreg is the set of all regular language.

� Which set relation holds between LL(0) and Lreg?

4. A grammar is left-recursive if it has a production of the form A! A�. Show that a left-recursive grammar
is not LL(k) for any k.

Exercise 2.4 Checkable LL(k) conditions
The formal definition of an LL(k)-grammar as given in the lecture is not very handy for checking if a given gram-
mar is an LL(k)-grammar. Therefore the lecture about LL-parsing introduced some checkable LL(k) conditions
(slides 31 and 32).

� Show that an LL(k)-grammar does in general not have to be a strong LL(k)-grammar for k > 1.

� Show that an LL(1)-grammar is always also a strong LL(1)-grammar. (Prove one direction of the theorem
on slide 31 of the lecture about LL-parsing.)

� Provide a sufficient condition to find out if a given context-free grammar is an LL(k)-grammar. This con-
dition should be weaker than the check if a grammar is a strong LL(k)-grammar. Give an example where
your condition classifies a grammar as LL(k)-grammar even if it is no strong LL(k)-grammar. Remember
that the definition of an LL(k)-grammar itself is of course also a sufficient condition, but for grammars that
define infinite languages it cannot be checked.

The following exercises provide further opportunities for practicing with finite automata, item PDAs and
regular expressions. They might not be discussed in full detail in the tutorials.

Exercise 2.5 Item-PDAs Revisited
Let the pushdown automaton P = (fa; bg; fq0; q1; q2; q3g;�; q0; fq3g), where

� = f(q0; a; q0q1); (q0; b; q0q2); (q0;#; q3); (q1; a; q1q1); (q1; b; �); (q2; a; �); (q2; b; q2q2)g

and # 62 � symbolizes the end of the input word, be given.
Provide a context-free grammar that generates the language L accepted by P . If possible, provide also a

regular expression for L. Otherwise provide sufficient arguments why this is not possible.

Exercise 2.6 Regular Expressions and Languages
The lecture defined regular expressions using the metacharacters ; and ". Show that they are the neutral elements
with respect to the alternative and concatenation operations in regular expressions. This means show that:

� (r1j;) describes the same language as r1

� (r1") describes the same language as r1

only by reasoning about the described languages as shown in the lecture. Assume the regular expression r1 to
denote the language R1.

2

Exercise 2.7 Finite Automata Reloaded
In this exercise we take a closer look at recognising common language structures like comments. Consider com-
ments in XML which start with <!-- and end with the first occurrence of -->. However, XML comments are not
nestable. So the first --> ends the comment no matter how many <!-- it contained. We can define the construct
<!-- until --> to describe such comments.

� Create a minimal deterministic finite automaton that accepts XML comments over an alphabet �, where
f<;>;�; !g � �. You may label an automaton edge with � n fx; yg to express that there are in fact edges
for all of the alphabet’s symbols except fx; yg.

3

