
Semantic Analysis

Sebastian Hack
Saarland University

W2015

Saarland University, Computer Science

1

Abstract Syntax Trees (AST)

� Delete Terminals that were only there to make the grammar unambiguous

� Remove Nonterminals in chain productions
(typical if precedence and associativity were expressed in grammar)

Id Bec AopIdCom SemSemIdInt SemId Bec Id IdMop

statlist

statlist

decl

stat

statlist

idlist

A

E

Intconst

F

T

type

stat

A

T

E

F

Intconst

T

F

E

T

Fidlist

2

Abstract Syntax Trees (AST)

� Delete Terminals that were only there to make the grammar unambiguous

� Remove Nonterminals in chain productions
(typical if precedence and associativity were expressed in grammar)

Id Bec AopIdComIdInt Id Bec Id IdMop

statlist

statlist

decl

stat

statlist

idlist

A

E

Intconst

Ftype

stat

A

F

Intconst

F

T

Fidlist

2

Semantic Analysis

Many programming languages have a static semantics. Interpretation of
the syntax without knowing the inputs of the program.

Purpose:

� Refute (more) meaningless programs

� Infer information about program helpful for implementation

Program analyses with respect to the static semantics are often called
semantic analyses. Commonly, we have two of them:

� Name Analysis

� Type Checking

3

Do we need semantic analysis?

Consider the following Python program:

def f(x):

if x = 0:

return x

else:

return y

What happens on f(0) and f(1)?

4

Do we need semantic analysis?
Python does not have a static semantics, hence it has to “rule out” many invalid
programs at runtime:

� When an identifier is declared, enter it into a definition table

� When it is used, look up, if there is a value for that identifier

� Incurs significant runtime overhead

� Allows more flexible (really really really?) code:
i.e. can add fields to objects at runtime

Similar things happen because of “duck typing”:

� Resolve operator overloading at runtime: a + b

Do we add two ints? Floats? Append to a string? Or is a an object of a
class that redefines +?

� Similarly for methods: a.b(c)

Does the class of a really provide a method b or a superclass?

To avoid runtime overhead, we use static semantics to make these questions

decidable statically.
5

Limits of static semantics

� C leaves semantics of many programs (under certain inputs) undefined.
Result: runtime errors, e.g. division by zero, dereference of
non-allocated memory

� Static semantics cannot capture them: in general undecidable

� Make language more restrictive to avoid some of them. E.g. Java:

– Cannot take address of a field or array cell
– Garbage collection policy avoids dangling pointers

� “Totalize” behavior, e.g.

– Throw exception on null dereference
– Array out-of-bounds check
– Incurs runtime overhead!

6

Name Analysis

� Every entity (variable, function, data type, etc.) has a defining
occurrence (definition) that gives it a name and describes its
properties with respect to static semantics (e.g. type)

� Every defining occurrence has a scope in which it is valid

� Scope is the static pendant to lifetime of referred object (at runtime)

� An applied occurrence refers to a definition

Purpose of name analysis:

� Ensure that every applied occurrence refers to a unique defining
occurrence

� Relate applied occurrence to defining occurrence in AST

Issues: Validity, Visibility, Qualification, Namespaces, Overloading

7

Validity

The scope (of validity) of a definition of an identifier x is the part of the
program (nodes in the AST) in which an applied occurrence of x refers to
it.

Inside a scope, each identifier can only defined once.

Example

{

int y;

// ...

int x = 1;

// ...

y = x + 1;

}

The definition of x is valid inside the entire block. But only visible after its
definition.

8

Visibility

Inside its scope, a definition of an identifier x can be invisible (hidden,
overwritten). Then, it is still forbidden to redefine x in the same scope (but
in a nested one!) but not possible to refer to that definition:

for (int i = 0; i < n; i++)

for (int i = 0; i < m; i++)

A[i] = ...; // app occ of i refers

// to innermost definition

Possible in C. Java forbids overwriting definitions of local variables but
allows

class X {

int x;

void foo(int x) {

x = 1;

}

}

9

Qualification

Some entities are composed of other entities (e.g. modules, classes,
structs). Their definition opens a scope in which their constituents are
defined:

struct vec3_t {

float x, y, z;

};

The scope of x, y, and z is limited by { }.

Use qualification to refer to constituents:

vec3_t v;

// ...

v.x = 1.0f;

In the static semantics, the . makes the identifier on the right-hand side
refer to its definition inside the scope of the entity described by the
left-hand side.

10

Multiple Name Spaces

Many programming languages allow multiple name spaces. More than one
definition of the same identifier can be valid and visible at the same
program point. Must be clear from the context which entity it is referred to.

Example (C)

labels, structs/unions, and functions/variables are in disjoint name spaces.

struct x {

int x;

};

int foo(int x) {

struct x y; // x refers to struct

y.x = x; // refers to parameter

goto x; // refers to label

x:

return y.x; // refers to parameter

}

11

Symbol (Definition) Tables

To detect the valid defining occurrence for an applied occurence and to handle
visibility one typically uses a stack of environments (Env = Id → Type).

1

2

3

4

{

}
int a; int c ;

{
int a; int c ;

∗

}

void r()

int a; int d ;

{

}

int a; int b;

void p(); void q();

void p()

int c ; int d ;

void q()

134

a

c

a

d

r

a

b

c

d

p

q

Pink boxes are pointers to the AST node of the

identifier’s declaration.

12

Symbol Table API

public class Scope {

private final Map <String , Declaration > decls;

private final Scope parent;

private Scope(Scope parent) {

this.parent = parent;

}

private Scope () {

this(null);

}

public boolean isRoot () { return parent = null; }

public Scope enterBlock () { return new Scope(this); }

public Scope leaveBlock () { return parent; }

13

Symbol Table API

public static class NotFound extends Exception { }

public static class AlreadyDefined extends Exception {

public Declaration lookup(String name) throws NotFound {

if (decls.containsKey(name))

return decls.get(name);

else if (! isRoot ())

return parent.lookup(name);

else

throw new NotFound ();

}

public void add(Declaration decl) throws AlreadyDefined {

String name = decl.getToken (). getText ();

if (decls.containsKey(name))

throw new AlreadyDefined ();

decls.put(name , decl);

}

}

14

Type Checking C

Type checking C is done by a bottom-up traversal of the AST.

Resolve overloading based on types of operands and implicit type cast rules:

public Binary extends Expression {

protected abstract Type applyOperatorTypeRules(Type left , T

public Type getType () {

if (this.type = null) this.type = computeType ();

return this.type;

}

protected Type computeType () {

Type lt = left.getType ();

Type rt = right.getType ();

if (lt.isError () ∨ rt.isError ())

return Type.ERROR;

return applyOperatorTypeRules(lt , rt);

}

}

15

Type Inference

Often types of variables are uniquely identified by the way the variables are
used. Use this information to avoid declarations and infer types
automatically.

This is common in functional language and modern functional/imperative
languages such as Scala, Rust, OCaml, . . .

Consider following example:

let rec fac = fun → if x ≤ 0 then 1

else x * fac (x - 1)

Because one branch uses the int constant 1, the term x * fac (x - 1) must
be an int as well. Hence x and fac (x - 1) must be ints as well. And finally
fac is a function from int → int.

16

A Toy Functional Language: Syntax

Syntax:

Expr ∋ e ::= c | x | ⊕e

| if e0 then e1 else e2

| (e1, . . . , ek) | [] | e1 :: e2
| (e1 e2) | (fun x → e)
| let x1 = e1 in e0

| let rec x1 = e1 and . . . and xn = en in e0

Types:

Type ∋ t ::= int | bool | (t1 ∗ · · · ∗ tn) | t list | t1 → tn

17

A Toy Functional Language: Static Semantics

Define a relation

Γ ⊢ e : t ⊆ (Id → Type)× Expr × Type

to indicate that under the environment Γ, expression e has type t.

Define typing rules inductively over the syntax.

Axioms:

Γ ⊢ c : tc (Const) tc type of constant c
Γ ⊢ [] : t list (Nil) ∀t
Γ ⊢ x : (Γ x) (Var) look up type of x in environment

18

A Toy Functional Language: Static Semantics

Op:
Γ ⊢ e1 : int Γ ⊢ e2 : int

Γ ⊢ e1 + e2 : int

Comp:
Γ ⊢ e1 : t Γ ⊢ e2 : t

Γ ⊢ e1 = e2 : bool

If:
Γ ⊢ e0 : bool Γ ⊢ e1 : t Γ ⊢ e2 : t

Γ ⊢ (if e0 then e1 else e2) : t

Tupel:
Γ ⊢ e1 : t1 . . . Γ ⊢ em : tm

Γ ⊢ (e1, . . . , em) : (t1 ∗ . . . ∗ tm)

Cons:
Γ ⊢ e1 : t Γ ⊢ e2 : t list

Γ ⊢ (e1 :: e2) : t list

App:
Γ ⊢ e1 : t1 → t2 Γ ⊢ e2 : t1

Γ ⊢ (e1 e2) : t2

Fun:
Γ⊕ {x 7→ t1} ⊢ e : t2

Γ ⊢ fun x → e : t1 → t2

Let:
Γ ⊢ e1 : t1 Γ⊕ {x1 7→ t1} ⊢ e0 : t

Γ ⊢ (let x1 = e1 in e0) : t

Letrec:
Γ′ ⊢ e1 : t1 . . . Γ′ ⊢ em : tm Γ′ ⊢ e0 : t

Γ ⊢ (let rec x1 = e1 and . . . and xm = em in e0) : t

with Γ′ = Γ⊕ {x1 7→ t1, . . . , xm 7→ tm}
19

An Example Derivation

Γ ⊢ x : int Γ ⊢ 0 : int

Γ ⊢ x ≤ 0 : bool
· · ·

· · ·

Γ ⊢ 1 : int

Γ ⊢ x : int

Γ ⊢ fac : int → int

Γ ⊢ x : int Γ ⊢ 1 : int

Γ ⊢ x − 1 : int

Γ ⊢ fac (x − 1) : int

Γ ⊢ x · fac (x − 1) : int

Γ ⊢ if x ≤ 0 then 1 else x · fac (x − 1) : int

20

Remarks

� An important property of a type system is preservation:
The type of an expression does not change under evaluation.

If Γ ⊢ e1 : τ and e1 ⇒∗
e2 then Γ ⊢ e2 : τ

Our type system exhibits preservation.

� preservation + progress = type safety
“Well-typed programs don’t go wrong”

� Given an environment, the rules can be used to check if the
environment leads to a correct typing

� Note that an expression can have multiple types. For every Γ and
every t, we can derive

Γ ⊢ fun x →x : t → t

� How do we characterize all valid types for an expression?

21

An Equation System

� Build an equation system to describe all valid types for an expression
� Introduce type variables for the types of expressions with unknown type
� Technicality: To have one equation system for an expression,

name variable apart to make their name unique
� Build equations based on typing rules

Consider fun x →x + 1. Based on the typing rules, we
come up with the following equations:

Fun : α1 = α → α2

Op : α2 = int

α = int

int = int

and hence

α = int α1 = int → int α2 = int

1x

x

fun

+

intα

α α2

α1

22

An Equation System

Let α[e] be the type variable for expression e.

Const: e ≡ b α[e] = tb

Nil: e ≡ [] α[e] = α list (α fresh)

Op: e ≡ e1 + e2 α[e] = int

α[e1] = int

α[e2] = int

Comp: e ≡ e1 = e2 α[e1] = α[e2]
α[e] = bool

Tupel: e ≡ (e1, . . . , em) α[e] = (α[e1] ∗ . . . ∗ α[em])

Cons: e ≡ e1 :: e2 α[e2] = α[e1] list
α[e] = α[e1] list

If: e ≡ if e0 then e1 else e2 α[e0] = bool

α[e] = α[e1]
α[e] = α[e2]

Fun: e ≡ fun x → e1 α[e] = α[x] → α[e1]

App: e ≡ e1 e2 α[e1] = α[e2] → α[e]

Letrec: e ≡ let rec x1 = e1 and . . . and xm = em in e0 α[x1] = α[e1] . . .
α[xm] = α[em]
α[e] = α[e0]

A solution σ is a unifier, a substitution (= map from type variables to types) such that
σsi ≡ σti for every equation si = ti in the equation system. 23

Correctness

To make use of the equation system, we have to show the following
theorem:

Theorem

Let e be an expression, V be the set of variables in e and E be the

equation system for e. Then,

1. If σ is a solution of E , then there is a derivation of Γ ⊢ e : t with

Γ = {x 7→ σ(α[x]) | x ∈ V } and t = σ(α[e])

2. Consider a derivation of the judgement Γ ⊢ e : t that contains

judgements Γ ⊢ e
′ : te′ for all subterms e

′ of e. Then, the substitution

σ(α[e ′]) =

{

te′ e
′ subterm of e

Γ x e
′ ≡ x ∈ V

is a solution of E .
24

Substitutions: Examples

1. Consider the equation
Y = X → X

The set of solutions is given by the substitution

{X 7→ t,Y 7→ (t → t)}

for every type t.

2. The equation
X → int = bool → Z

has exactly one solution:

{X 7→ bool,Z 7→ int}

3. The equation
bool = X → Y

has no solution.
25

Substitutions: Definitions

� σ is idempotent if σ ◦ σ = σ
Means that there is no variable Y with σ(Y) = X with σ(X) 6= X .

� An idempotent σ is most general if for every other idempotent unifier
τ , there is an appropriate substitution τ ′ with τ = τ ′ ◦ σ. E.g.

{Y 7→ (X → X),X 7→ X}

is the most general unifier of the first example on the last slide.

� A set of term equations si = ti , 1 ≤ i ≤ m has either no solution or a
most general idempotent unifier.

26

Computing the most general unifier

Given the equation system si = ti , 1 ≤ i ≤ m, start with
unifyList [(s1, t1), . . . , (sm, tm)] ∅

let rec unify (s, t) θ = if θ s ≡ θ t then θ
else match (θ s, θ t)

with (X , t) → if occurs (X , t) then Fail
else {X 7→ t} ◦ θ

| (t,X) → if occurs (X , t) then Fail
else {X 7→ t} ◦ θ

| (f (s1, . . . , sk), f (t1, . . . , tk)) →
unifyList [(s1, t1), . . . , (sk , tk)] θ

| (a, a) → θ
| _ → Fail

and unifyList list θ = match list
with [] → θ
| ((s, t) :: rest) → let θ = unify (s, t) θ

in if θ = Fail then Fail
else unifyList rest θ

27

Syntax-Directed Version (Algorithm W)
Solving the equation system as a whole does not give precise error messages (we don’t
know where an error was). Instead of collecting equations, solve equations in a
syntax-directed way:

let rec W e (Γ, θ) = match e

with c → (tc , θ)
| [] → letα = new()

in (α list, θ)
| x → (Γ(x), θ)
| (e1 :: e2) → let (t1, θ) = W e1 (Γ, θ)

in let (t2, θ) = W e2 (Γ, θ)
in let θ = unify (t1 list, t2) θ

in (t2, θ)
| (e1

′+′
e2) → let (t1, θ) = W e1 (Γ, θ)

in let (t2, θ) = W e2 (Γ, θ)
in let θ = unify (int, t1) θ
in let θ = unify (int, t2) θ

in (int, θ)
| (e1 e2) → let (t1, θ) = W e1 (Γ, θ)

in let (t2, θ) = W e2 (Γ, θ)
in let α = new ()
in let θ = unify (t1, t2 → α) θ

in (α, θ)
. . .

28

Syntax-Directed Version (Algorithm W)

| (fun x → e)
→ let α = new()

in let (t, θ) = W e (Γ⊕ {x 7→ α}, θ)
in (α → t, θ)

| (let x1 = e1 in e0)
→ let (t1, θ) = W e1 (Γ, θ)

in let Γ = Γ⊕ {x1 7→ t1}
in let (t0, θ) = W e0 (Γ, θ)
in (t0, θ)

| (let rec x1 = e1 and . . . and xm = em in e0)
→ let α1 = new()

. . .
in let αm = new()
in let Γ = Γ⊕ {x1 7→ α1, . . . , xm 7→ αm}
in let (t1, θ) = W e1 (Γ, θ)
in let θ = unify (α1, t1) θ

. . .
in let (tm, θ) = W em (Γ, θ)
in let θ = unify (αm, tm) θ
in let (t0, θ) = W e0 (Γ, θ)

in (t0, θ)
29

(Let-) Polymorphism

Consider the expression

let single = fun y → [y]

in single (single 1)

We derive γ → γ list as the type for single.
Because of (single 1) we unify γ with int.
The outer expression then wants to unify int with int list which fails.

Reason:
Type variables have to be instantiated once for the expression.

Solution:
Introduce type schemas and allow type variables to be instantiated
differently in subexpressions.

∀α1, . . . , αn.t

generalizes type variables α1, . . . , αn in type expression t.

30

(Let-) Polymorphism

Introduce new typing rules for let and let rec that generalize type variables
that do not occur in environment:

Inst:
Γ(x) = ∀α1, . . . , αk .t

Γ ⊢ x : t[t1/α1, . . . , tk/αk]
(for all t1, . . . , tk)

Let:
Γ ⊢ e1 : t1 Γ⊕ {x 7→ close t1 Γ} ⊢ e0 : t0

Γ ⊢ (let x1 = e1 in e0) : t0

The function close t Γ generalizes all type variables in t that do not occur
in Γ. We modify Algorithm W accordingly:

fun inst (∀α1, . . . , αk . t) =
let β1 = new()
. . .

in let βk = new()
in t[β1/α1, . . . , βk/αk]

let rec W e (Γ, θ) = . . .
| x → (inst (θ(Γ(x))), θ)
| (let x1 = e1 in e0)

→ let (t1, θ) = W e1 (Γ, θ)
in let s1 = close (θ t1) (θ ◦ Γ)
in let Γ = Γ⊕ {x1 7→ s1}
in let (t0, θ) = W e0 (Γ, θ)
in (t0, θ)

31

