Static Program Analysis

Seidl/Wilhelm/Hack: Compiler Design — Analysis and
Transformation, Springer Verlag, 2012

A Short History of Static Program Analysis

e Early high-level programming languages were implemented on very
small and very slow machines.

e Compilers needed to generate executables that were extremely
efficient in space and time.

e Compiler writers invented efficiency-increasing program
transformations, wrongly called optimizing transformations.

e Transformations must not change the semantics of programs.
e Enabling conditions guaranteed semantics preservation.

e Enabling conditions were checked by static analysis of programs.

Theoretical Foundations of Static Program Analysis

e Theoretical foundations for the solution of recursive equations:
Kleene (1930s), Tarski (1955)

e Gary Kildall (1972) clarified the lattice-theoretic foundation of
data-flow analysis.

e Patrick Cousot (1974) established the relation to the
programming-language semantics.

Static Program Analysis as a Verification Method

e Automatic method to derive invariants about program behavior,
answers questions about program behavior:
— will index always be within bounds at program point p?
— will memory access at p always hit the cache?

e answers of sound static analysis are correct, but approximate:
don’t know 1is a valid answer!

e analyses proved correct wrt. language semantics,

Proposed Lectures Content:

1. Introductory example: rules-of-sign analysis
theoretical foundations: lattices

an operational semantics of the language
another example: constant propagation

relating the semantics to the analysis—correctness proofs

AR

some further static analyses in compilers: Elimination of superfluous
computations

— available expressions
— live variables

— array-bounds checks

1 Introduction

... 1n this course and in the Seidl/Wilhelm/Hack book:

a simple imperative programming language with:

variables

R =¢;

R = Milel;
Me1] = e3;

if (e) s; else sy
goto L;

//
//
//
//
//
//

registers

assignments

loads

stores

conditional branching

no loops

Intermediate language into which (almost) everything can be compiled.

However, no procedures.

So, only intra-procedural analyses!

2 Example: Rules-of-Sign Analysis

Starting Point: Questions about a program, mostly at a particular program
point:

e May variable x have value 0 when program execution reaches this
program point? — Attempt to exclude division by 0.

e May x have a negative value? —— Attempt to exclude sqrt of a
negative number.

Solution: Determine at each program point the sign of the values of all
variables of numeric type.

Determines a sound, but maybe approximate answer.

Example program represented as control-flow graph

1: x = 0; y

2:y = 1; _

3: while (y > 0) do

4 - v = v + x; true(y>0) false(y>0)
St x =x + (-1); @

Y = y+X

&)

X = X+(-1)

All the ingredients:
e a set of information elements, each a set of possible signs,

e a partial order, “C”, on these elements, specifying the relative
strength” of two information elements,

e these together form the abstract domain, a lattice,

e functions describing how signs of variables change by the execution
of a statement, abstract edge effects,

e these need an abstract arithmetic, an arithmetic on signs.

We construct the abstract domain for single variables starting with the
lattice Signs = 2104} with the relation “C” =“C”.

{'!0:"'}

{'=+}

{

} {0} {+}

«»

10

The analysis should ”bind” program variables to elements in Signs.
So, the abstract domain is D = (Vars — Signs) 1, a Sign-environment.
| € D is the function mapping all arguments to { }.

The partial order on D is D, C D, iff
D=1 or
Dyx 2 Dy (v € Vars)

Intuition?

11

The analysis should ”bind” program variables to elements in Signs.
So, the abstract domain is D = (Vars — Signs) . a Sign-environment.
| € D is the function mapping all arguments to { }.

The partial order on D is D, C D, iff
D=1 or
Dyx 2 Dy (v € Vars)

Intuition?

D 1s at least as precise as [, since Do admits at least as many signs as
D,

12

How did we analyze the program?

N
o In particular, how did we walk the
lattice for y at program point 5?

true(y>0) false(y>0)

&

y = y+X

X = X+(-1)

13

How 1s a solution found?

Iterating until a fixed-point 1s reached

true(y>0) false(y>0)

Y = y+X

X = X+(-1)

\4

O

14

Idea:

e We want to determine the sign of the values of expressions.

15

Idea:

e We want to determine the sign of the values of expressions.

e For some sub-expressions, the analysis may yield {+,—,0},
which means, it couldn’t find out.

16

Idea:

e We want to determine the signs of the values of expressions.

e For some sub-expressions, the analysis may yield {+,—,0},
which means, it couldn’t find out.

e We replace the concrete operators [working on values by
abstract operators O working on signs:

17

Idea:

e We want to determine the signs of the values of expressions.

e For some sub-expressions, the analysis may yield {+,—,0},
which means, it couldn’t find out.

e We replace the concrete operators [working on values by
abstract operators O working on signs:

e The abstract operators allow to define an abstract evaluation of
expressions:

[e]* : (Vars — Signs) — Signs

18

Determining the sign of expressions in a Sign-environment is defined by
the function | | : Fxp x SignEnv — Val

[{+} ifc>0
[[C]]ﬂD = q {—} ifc<0

| {0} ifc=0
[v]? = D(v)
[e.Oe]! D = [e]! DO*[es]* D
[Oe]* D = DOf[e]* D

A remark about the notation:
[1 is given in a "distributed” form; its first argument appears between the
brackets, the second follows the brackets.

19

Abstract operators working on signs (Addition)

{-,

|#

10}

+}

-1

0}

{-,

+}

10, +}

{_a 09 +}

{0}
{+}
{-1
- 0}
- +}
0, +}
{- 0, +}

10}

{_, Oa +}

{+}

20

Abstract operators working on signs (Multiplication)

x ¥ 10} t+} 1=}
10} 10} 10} 10}
t+} 10} i+} =1
{—1 {0} {—1 +1
{=0p | {0} {=0} {0, +}
{—=+} | {0} (= +} {— +}
10, +} 0} 10, 4] {— 0}
(=0, +} | 10} {=0,+} (= 0,4}

Abstract operators working on signs (unary minus)

_ 7

{0}

{+}

{-

{_a O}

{_9 +}

{0, +}

{_9 Oa +}

{0}

-}

(+}

{+, 0}

{_’ +}

{O’ _}

{_’ Oa +}

21

Working an example: D={rw={+}y—={+}}

[z + 7] D = [«]*D +* [7]* D
= {+F + {4
= {+}

[+ + (9D = {+} + (-*y[D)
= D
= {+} + {-}
= {+ -0}

22

[lab]* is the abstract edge effects associated with edge k.
It depends only on the label lab:

__,]]ﬂ D = D

[true (e)]* D = D

[false (e)]* D = D

[r =e]* D = D@ {rw~ [e]f D}

[v = Me|;]!D = D&{rw {+ —,0}}
[Mle)] =ex]*D = D

... whenever D +# 1

These edge effects can be composed to the effect of apath m = k; ... k.
[7]F = [k P o... o [k]?

23

Consider a program node v:

— For every path 7 from program entry start to v the analysis should
determine for each program variable x the set of all signs that the
values of z may have at v as a result of executing 7.

— Initially at program start, no information about signs is available.

— The analysis computes a superset of the set of signs as safe

information.

—— For each node v, we need the set:

Sl = | H[=IT | 7w start —* v}
where T is the function bindig all variables to {—, 0, +}.

This function describes that we don’t know the sign of any variable at
program entry.

24

Question:

How do we compute S[u] for every program point «?

25

Question:

How can we compute S|u| for every program point «?

Collect all constraints on the values of S|u| into a system of constraints:

S|start]
Sl 2 [k (S[ul) k= (u,_,v) edge

U
—

26

Wanted:

e aleastsolution (why least?)

e an algorithm that computes this solution

Example:

27

——

=

= he

—]

-~ 2+ +
S I 5 =
T 1T 1 1
8 > 8 D
—_— =~ =~ —
e D P P

| B s B s B s BN s BN s |

_ 0 e g e —

— o /o o

S e N T [y T Y SR Y SO Y S |

true(y>0)
y+X |
O,

x+(-1)

X =

28

3 An Operational Semantics

Programs are represented as control-flow graphs.

Example:

29

void swap (int i, int 7J) {

int t; Rle[z‘h]
it (af1] > al3l) o Az = Ao+ 1%
t = alJl;
aljl = al1i]; Ro = M[A;]
ali] = t; Neg (R1 > R2) \Pos (R1 > R2)
: |
Az = Ao + 1% j;
}

30

Thereby, represent:

vertex

program point

start

program start

stop

program exit

edge

labeled with a statement or a condition

31

Thereby, represent:

vertex | program point
start program start
stop program exit
edge step of computation
Edge Labelings:
Test : Pos (e) or Neg (e) (better true(e) or false(e))
Assignment : R = ¢;
Load : R = Mlel;
Store : Mle;] = es;

Nop :

)

32

Execution of a path is a computation.

A computation transforms a state s = (p,) where:

p: Vars — int

values of variables (contents of symbolic registers)

(N — int

contents of memory

Every edge k = (u, lab, v) defines a partial transformation

of the state:

[k] = [iab]

33

[] (o,)

[true (e)] (p, p
[false (e)] (p, 1)

~
N——

(p, 1)

> >
S

34

L1 (o 1) = (p, 1)

[true (e)] (p,) = (p, 1) if |

[false (e)] (p,) = (p. 1) if [
// [e] : evaluation of the expression e, e.g.
/e +yl{e =T y— -1} =6
) M ==4){zr—5} =1

35

1 Cos 1) = (p)

[true (e)] (p,) = (p,) if [e] p # 0

[false ()] (p,) = (p,11) if [e] p=0
// le] : evaluation of the expression e, e.g.

[/ lz+y{z = Ty— -1} =0
J e ==4){z =5} =1

[R=¢;](p,n) = (pD{R— [e]p},n)

// where “@” modifies a mapping at a given argument

36

N

[R=Mlel;] (p,n) = (p@{R= u(le]p))},)

[Mlei] = eo;] (o, 1) = (o[n D {[er] p = le2] p})

Example:

[z =2+ L] ({z— 5}, 1) = (p,n) where

p = {x—5}d{r—[z+1]{x— 5}}
= {r—5}d{r— 6}
= {x— 6}

A path 7= Fkiky...k, definesacomputation in the state s if

s € def ([kn]o...o[k])

The result of the computationis || s = ([kn] o...0[ki]) s

37

The approach:

A static analysis needs to collect correct and hopefully precise
information about a program in a terminating computation.

Concepts:
e partial orders relate information for their contents/quality/precision,
e least upper bounds combine information in the best possible way,

e monotonic functions preserve the order, prevent loss of collected
information, prevent oscillation.

38

4 Complete Lattices

A set D together with arelation L C D x D 1s a partial order if for
all a,b,c € D,

aC a reflexivity
aCbANDCEa = a=0b anti—symmetry
aCObADCE c — alc transitivity

Intuition: £ represents precision.

By convention: a C b means a is at least as precise as b.

39

Examples:

1. D = 2t%bc} with the relation “C” :

40

Examples:
1. The rules-of-sign analysis uses the following lattice D = o104}
with the relation “C” :

{-} {0} {+}

41

2. 7 with the relation “="":

2. /7 with the relation “<” :

Bomal

oY

3. 7, = 7 J{L1} with the ordering:

42

d € D 1s called upper bound for X C D if

rLCd forallx € X

43

d € D 1s called upper bound for X C D if

rCd forallz € X

d is called least upper bound (lub) if
1. d is an upper bound and

2. d C y for every upper bound y of X.

44

d € D 1s called upper bound for X C D if

rCd forallz € X

d is called least upper bound (lub) if
1. d is an upper bound and
2. d C y for every upper bound y of X.

The least upper bound is the youngest common ancestor in the pictorial
representation of lattices.

Intuition: It is the best combined information for X.

Caveat:

e {0,2,4,...} C Z has no upper bound!
e {0,2,4} C 7 has the upper bounds 4, 5,6, . ..

45

A partially ordered set D 1s a complete lattice (cl) if every subset
X CD hasaleastupper bound | |X € D.

Note:

Every complete lattice has

— aleastelement | =[]0 € D;
— agreatestelement T =||D € D.

46

Examples:

1. D = 2{=0%*} with T is a complete lattice
2. D = Z with “<” 1s not a complete lattice.
3. D = 7, is also not a complete lattice

4. With an extra element T, we obtain the flat lattice
7, =7U{L, T}

47

Theorem:

If D 1sacomplete lattice, then every subset X C D has a greatest
lower bound []X.

48

Back to the system of constraints for Rules-of-Signs Analysis!

S|start] 3 T
S|v] 3 [k]* (S[u]) k= (u,_,v) edge

Combine all constraints for a variable v by least-upper-bound operator | |:
Sl 3 IR (SI) | £ = (u,_,v) edge}

Our generic form of the systems of constraints:

v, 2 filw, ..., Tn) ()

Relation to the running example:

T; unknown here: S[u]
D values here: Stigns

C C DxD ordering relation here: C

fi: D™ = D constraint here:

49

A mapping f:D; — Dy 1is called monotonic (order preserving)
if f(a)C f(b) forall aCb.

50

A mapping f:D; — Dy 1is called monotonic (order preserving)
if f(a)C f(b) forall aCb.

Examples:

(1) D;=Dy=2Y forasetUand fz= (zNa)Ub.

Obviously, every such f is monotonic

51

A mapping f:D; — Dy 1is called monotonic (order preserving)
if f(a)C f(b) forall aLCb.

Examples:

(1) D;=Dy=2Y forasetUand fz= (zNa)Ub.
Obviously, every such f is monotonic

(2) Dy = Dy = Z (with the ordering “<”’). Then:

° Incx =x +1 1s monotonic.

° decx =x — 1 1s monotonic.

52

A mapping f:D; — Dy 1is called monotonic (order preserving)
if f(a)C f(b) forall aLCb.

Examples:

(1) D;=Dy=2Y forasetUand fz= (zNa)Ub.

Obviously, every such f is monotonic

(2) Dy = Dy = Z (with the ordering “<”’). Then:

° Incx =x +1 1s monotonic.
° decx =x — 1 1s monotonic.

° INVZ = —x 1S not monotonic

53

Theorem:

If fi:Dy —-Dy and fy:Dy — D3 are monotonic, then also
Jao f1: Dy — Ds

Theorem:

If D isacomplete lattice, then the set |S — D| of functions
f: 85— D isalsoacomplete lattice where

fCg iff fxCgax forallz € Dy

54

Theorem:

If fi:Dy —-Dy and fy:Dy — D3 are monotonic, then also
Jao f1: Dy — Ds

Theorem:

If D isacomplete lattice, then the set |S — D| of functions
f: 85— D isalsoacomplete lattice where

fCg iff fxCgax forallz € Dy

In particular for F C [S — Dy,

|_|F:f with fx:U{gx\geF}

55

Wanted:

where all

least solution for:

Zﬁigfi(ﬂfl,...,lljn), 221,

f; : D™ — D are monotonic.

56

Wanted: least solution for:

Zﬁigfi(ﬂfl,...,lljn), 221,

where all f; : D" — D are monotonic.

Idea:

e Consider F :D"™ — D™ where

F(xy,...,20) = (Y1, -, Yn)

57

with y, = fi(z1,...,2,).

Wanted: least solution for:

:E,-in(azl,...,a:n), 7;:1,...,7’2, (*)

where all f; : D" — D are monotonic.

Idea:

e Consider F :D"™ — D™ where

F(xy,...,x0) = (Y1,.-.,yn) With 1y, = fi(x1,...,2,).

e Ifall f; aremonotonic,thenalso F

58

Wanted: least solution for

in;fi(l'l,...,ﬂfn), izl,...,n (*)

where all f; : D" — D are monotonic.

Idea:

e Consider F' :D™ — D™ where

F(xy,...,x) = (Y1,---,Yyn) Wwith 1y, = fi(x1,...,2,).
e Ifall f; aremonotonic,thenalso F

e We successively approximate a solution from below. We construct:

L, FL1, F*1, F°l,
Intuition: This iteration eliminates unjustified assumptions.
Hope: We eventually reach a solution!

59

Theorem

e | F1 F?*1, .. formanascending chain:

1l C F.l1 C F*1L C

o If FF1 =FFT11, Fistheleastsolution.

e If all ascending chains are finite, sucha k& always exists.

60

Proof

The first claim follows by induction:

Foundation: F' L =1 C F!' L

Step: Assume [' 1 T F'1l. Then
Fil=F(F'1)CF(F1)=F+_1

since [monotonic

61

Step: Assume F*'1 T F'1l. Then
Fil=FF 'O CF((F1L)=F"T"_1

since [monotonic

Conclusion:

If D 1is finite, a solution can be found that is definitely the least
solution.

Question: What,if D is not finite?

62

Theorem Knaster — Tarski

Assume [D 1is a complete lattice. Then every monotonic function
f: D — D has aleast fixed point dy € D.

Remark:

The least fixed point dy 1sin P and a lower bound

—— dp 1S the least value z

Application:
Assume r; J fi(xy,...,x,), i=1,...,n (%)

is a system of constraints where all f; : D" — D are monotonic.

——> least solution of (x) = least fixed point of F’

63

Conclusion:

Systems of inequalities can be solved through fixed-point iteration, i.e.,
by repeated evaluation of right-hand sides

64

Caveat: Naive fixed-point iteration is rather inefficient

Example:

>

true(y>0) false(y>0)

&

y = y+X

X = X+(-1)

65

Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current
values of unknowns

Example:

66

\4

true(y>0)

y = y+X

&)

X = X+(-1)

false(y>0)

O

67

The code for Round Robin Iteration in Java looks as follows:

for (i = 1;¢ < nji++) z; = L;
do {
finished = true;
for (2 = 1;¢0 < nji++) {
new = fi(r1,...,T,);
if (W(z; 3 new)) {
finished = false;

T, = x; U new;

}
} while (1finished);

68

What we have learned:

e The information derived by static program analysis is partially
ordered in a complete lattice.

e the partial order represents information content/precision of the lattice
elements.

e least upper-bound combines information in the best possible way.

e Monotone functions prevent loss of information.

69

For a complete lattice D, consider systems:

Istart] 3 dg
If] 3 [RFEWR) k=(u_v) edge

where dy €D andall [k]*:D— D are monotonic ...
Wanted: MOP (Merge Over all Paths)

T[] = | {In)*do | = : start —* v}

Theorem Kam, Ullman 1975

Assume 7 1s asolution of the constraint system. Then:

Zv] 3 I%v] for every v
In particular: Z[v] 3 [r]*d, for every 1 : start —* v

70

Disappointment: Are solutions of the constraint system just upper
bounds?

Answer: In general: yes
Notable exception, if all functions [k]* are distributive.

The function f:D; — Dy 1s called distributive, if

FUX)=||{fz]|xze X} forall) # X C D;

Remark: If f : D; — Dy 1is distributive, then it is also monotonic

Theorem Kildall 1972

Assume all v are reachable from srart.

Then: If all effects of edges [k]* are distributive, Z*[v] = Z[v] holds for
all v.

Question: Are the edge effects of the Rules-of-Sign analysis distributive?

71

5 Constant Propagation

(Goal: Execute as much of the code at compile-time as possible!

Example:

if (x> 0)
M|A] = B;

72

Obviously, x has always the value 7

Thus, the memory access is always executed

Goal:

73

Obviously, x has always the value 7

Thus, the memory access is always executed

Goal:

74

Idea:

Design an analysis that for every program point « determines the
values that variables definitely have at w;

As a side effect, it also tells whether w© can be reached at all

75

Idea:

Design an analysis that for every program point u, determines the
values that variables definitely have at w;

As a side effect, i1t also tells whether w© can be reached at all

We need to design a complete lattice and an abstract semantics for this
analysis.

It abstracts from the variable binding of the state, p : Vars — int, in a
similar way as the Rules-of-Sign analysis.

76

As 1n the case of the Rules-of-Signs analysis the complete lattice 1s
constructed in two steps.

(1) The potential values of variables:

7' =7U{T} with 2Cy iffy=Torz=y

77

Caveat: Z' isnotacomplete lattice in itself

2) D= (Vars =2"), = (Vars = Z")U{Ll}
// L denotes: “not reachable”

with Dy C Dy, iff 1 =D, or
DyxE Dyx (v € Vars)

Remark: D isacomplete lattice

78

For every edge k = (_, lab,_) , construct an effect function
[£]¥ = [lab]* : D — D which simulates the concrete computation.

Obviously, [lab]* L = L forall lab
Nowlet 1 # D¢ Vars —7".

79

Idea:

e Weuse D todetermine the values of expressions.

80

Idea:

e Weuse D todetermine the values of expressions.

e For some sub-expressions, we obtain T

81

Idea:

e Weuse D todetermine the values of expressions.
e For some sub-expressions, we obtain T

—

As in the Rules-of-Sign analysis, we replace the concrete operators
O by abstract operators Of thatcan handle T :

T if a=Torb=T
a0 ph =
a b otherwise

82

Idea:

e Weuse D todetermine the values of expressions.
e For some sub-expressions, we obtain T
—

As in the Rules-of-Sign analysis, we replace the concrete operators
O by abstract operators Of thatcan handle T :

T if a=Torb=T
a0 ph =
a b otherwise

e The abstract operators allow to define an abstract evaluation of
expressions:

[e]* : (Vars = Z7") = Z"

83

Abstract evaluation of expressions is like the concrete evaluation — but
with abstract values and operators. Here:

[c]* D = ¢
[e.Oe]! D = [e]f DO [es]* D

... analogously for unary operators

84

Abstract evaluation of expressions is like the concrete evaluation — but
with abstract values and operators. Here:

[c]* D = ¢
[e.Oe]! D = [e]f DO [es]* D

... analogously for unary operators
Example: D={rw—2,y—~T}

[« +7]*D = [2]*D +* [7)* D
= 2487
= 9

[t —y]*D = 2 -FT
= T

85

Thus, we obtain the following abstract edge effects [lab]* :

[]f D = D

(L if 0=[c]*D definitely false
[true (¢)]* D = 3 I°] 4

| D otherwise possibly true
_ (D if 0C[e]fD possibly false
false (e)]* D = =[] P 4
' | L otherwise definitely true
x = e D = D@ {rw [e]* D}
= Mle|.]*D = Do{rw— T}
:M[Gl] — GQ;Hﬂ D =D

... whenever D =# 1

86

At start, wehave Dy ={x— T |z € Vars}.

Example:

87

At start, wehave Dt ={z+— T |x € Vars}.

Example:
1| {z—T}
2 | {x > T}
3 {x—T7}
4 | {r— T}
51 Lu{e—=7t={r— T}

The abstract effects of edges [k]* are again composed to form the
effects of paths 7 =Fk;... k. by:

(7]t = [k]Jfo...o[k]f :D—D

88

Idea for Correctness: Abstract Interpretation
Cousot, Cousot 1977

Establish a description relation A between the concrete values and
their descriptions with:

xAa; N agCay — zAa

Concretization: vya={z|zAa}
// returns the set of described values

&9

(1) Values: A CZx7Z'
zAa iff z=aVa=T

Concretization:

{fa} if aCC T
Ta =
Z if a=T

90

(1) Values: A CZx7Z'
zAa iff z=aVa=T

Concretization:

{fa} if aCC T
Ta =
Z if a=T

(2) Variable Bindings: A C (Vars = Z) x (Vars = Z"),

pAD iff D#1L A pxrC Dz (ve Vars)

Concretization:

Do 0 if D=1
! {p|Va: (pz) A(Dx)} otherwise

91

Example: fr—=1y— =T} Ao T,y— =7}

(3) States:

A C ((Vars = 2Z) x (N—= 2Z)) x (Vars = 2Z"),
(p,) A D iff oA D

Concretization:

D_ 0 if D=1
! {(p,p) |Vx: (px) A(Dz)} otherwise

92

We show correctness:

(%)

It

sA D and

[7] s is defined, then:

(7] s) A ([7FF D)

7]

93

The abstract semantics simulates the concrete semantics

In particular:
[7] s € v ([=]* D)

94

The abstract semantics simulates the concrete semantics

In particular:
[7] s € v ([=]* D)

In practice, this means for example that D x = —7 1mplies:

—7 forall p e~D

plx
— pv = —7 for (p1,_)=[n]s

95

The MOP-Solution:
D*|v] = |_|{[[7T]]jj D+ | 7 start =" v}

where Drax=T (x € Vars) .

In order to approximate the MOP, we use our constraint system

96

Example:

97

Example:

98

Ly
oy T T
Ly10 | T
2110 1
31 10| 1
411 10 | 10
51 9 |10
6
7

Example:

99

Loy Ly
oy T T | T|T
L1} 7 |10 T
2011001 (T | T
1001 T | T
A 1010 T | T
S 9 (10 T | T
6 T 1T
7 T 1T

Example:

3

Loy LAY Ty
O T | T T |T
L1000} 7 10| T
2011001 (T |T
101 T | T
41110 {10 || T | T || dito
S5 9 (10 T | T
6 T | T
7 T | T

100

Concrete vs. Abstract Execution:

Although program and all initial values are given, abstract execution does
not compute the result!

On the other hand, fixed-point iteration 1s guaranteed to terminate:

For n program points and 7 variables, we maximally need:
n-(m+1) rounds

Observation: The effects of edges are not distributive!

101

Counterexample:

Then fD1 L fD2

1R N

= [v=z+y]f

{z+— 2,y 3}
{3,y — 2}

{r—=5y—3tUu{r—5y— 2}
{r—5y—T}
{r—T,y— T}
flr— T, y— T}

f (DU Dy)

102

We conclude:

The least solution D of the constraint system in general yields only an
upper approximation of the MOP, 1.e.,

D*[v] & D[v]

103

We conclude:

The least solution D of the constraint system in general yields only an
upper approximation of the MOP, 1.e.,

D*[v] & D[v]

As an upper approximation, D[v] nonetheless describes the result of
every program execution 7 thatreaches v :

(Il (o 1)) A (D[v])

whenever x| (p,) is defined

104

6 Removing superfluous computations

A computation may be superfluous because

e the result is already available, — available-expression analysis, or

e the result 1s not needed — live-variable analysis.

105

6.1 Redundant computations

Idea:

If an expression at a program point is guaranteed to be computed to the
value it had before, then

— store this value after the first computation;

— replace every further computation through a look-up

Question to be answered by static analysis: Is an expression
available?

106

Problem: Identify sources of redundant computations!

Example:
z = 1;
y = MI7};
A T = |y+ 2|
B To = |Y+ 2z

B 1s a redundant computation of the value of |y + z |, if

(1) A is always executed before B; and

(2) y and z at B have the same values as at A

107

Situation: The value of = + y is computed at program point
X+y

7
O
and a computation along path 7 reaches v where 1t evaluates again « + y
If x and y have not been modified in 7, then evaluation of x + y at v

returns the same value as evaluation at .

This property can be checked at every edge in .

108

Situation: The value of = + y is computed at program point
X+y
O—"—=@®
and a computation along path 7 reaches v where it evaluates again x + y

.... If z and y have not been modified in 7, then evaluation of = + vy at v 1s
known to return the same value as evaluation at u

This property can be checked at every edge in 7.

More efficient: Do this check for all expressions occurring in the
program in parallel.

Assume that the expressions A = {e, ..., e} are available at u.

109

Situation: The value of = + v is computed at program point u
X+y
-
OO
and a computation along path 7 reaches v where it evaluates again © + y

.... If x and v have not been modified in 7, then evaluation of « + y at v
must return the same value as evaluation at .

This property can be checked at every edge in 7.

More efficient: Do this check for all expressions occurring in the
program in parallel.

Assume that the expressions A = {eq,...,e,.} are available at u.

Every edge k transforms this setinto a set [k]* A of expressions
whose values are available after execution of £.

[K]¥ A is the (abstract) edge effect associated with k

110

These edge effects can be composed to the effect of apath m = k; ... &k,

[7]F = [k,]Fo. ..o [ki]?

111

These edge effects can be composed to the effect of apath m = k; ... &k,

[7]F = [k,]Fo. ..o [ki]?

The effect [k]* ofanedge Kk = (u,lab,v) only depends on the
label lab, ie., [k]* = [lab]*

112

These edge effects can be composed to the effect of a path m = £y ... k.
[7]F = [k] oo [la]

The effect [k]* ofanedge Kk = (u,lab,v) only depends on the
label [ab, i.e., [k]* = [lab]* where:

[]F A = A
[true(e)]* A = [false(e)]* A = AuU{e}
[r=¢e]*A = (AU{e})\Ezpr, where

Ezpr, all expressions that contain

[v = M[e][FA = (Au{e})\Eapr,
[Mle,] =ex]FA = AU{er, e}

113

— An expression is available at v 1f 1t 1s available along all paths 7 to
V.

— For every such path 7, the analysis determines the set of
expressions that are available along 7.

1

Initially at program start, nothing is available.

— The analysis computes the intersection of the availability sets as
safe information.

—— For each node v, we need the set:

Alv] = ﬂ{[[ﬂ]]ﬂ@ | 72 start = v}

114

How does a compiler exploit this information?
Transformation UT (unique temporaries):

We provide a novel register 7. as storage for the values of e:

115

Transformation UT (unique temporaries):

We provide novel registers 7, as storage for the value of e:

T = €; ﬁ T, = e;
r =T,

Neg (e) Pos (e) ﬁ ?Te

Neg (7,) Pos (T¢)

... analogously for R = Mle|; and Mle;| = es;.

116

Transformation AEE (available expression elimination):

If e 1s available at program point u, then e need not be re-evaluated:

We replace the assignment with Nop.

117

Example:

Y + 3;

Y + 3;

118

r =1y -+ 3;
x="T;
2 =1y 4+ 3;

Example:

Y + 3;

Y + 3;

119

Example:

r = y-+3;
x = T
z = y—+3;

120

Example:

r = y-+3;
x = T
z = y—+3;

121

Warning:

Transformation UT 1s only meaningful for assignments & = e; where:

— x & Vars(e); why?
— e & Vars; why?

— the evaluation of e 1s non-trivial; why?

122

Warning:

Transformation UT is only meaningful for assignments & = ¢; where:

— x ¢ Vars(e); otherwise e is not available afterwards.
— e ¢ Vars; otherwise values are shuffled around

— the evaluation of ¢ is non-trivial; otherwise the efficiency of the
code 1s decreased.

Open question ...

123

Question:

How do we compute A|u| for every program point ?

124

Question:

How can we compute A|u] for every program point?

We collect all constraints on the values of A|u| into a system of

constraints:

YRS
= w
—
Q
=
S
N 1N
= S
[—]
~—~
p=
S
N——"

k= (u,_,v) edge

125

Question:

How can we compute A|u] for every program point?
Idea:

We collect all constraints on the values of A|u| into a system of
constraints:

N
< "»
— N
)
=
S
N 1N
— =

k]* (Alu]) k= (u,_,v) edge

Why C?

Then combine all constraints for each variable v by applying the
least-upper-bound operator —

Al < ({IK] [) [k =(u,_v) edge;

126

Wanted:

e a greatest solution (why greatest?)

e an algorithm that computes this solution

Example:

127

Wanted:

e a greatest solution (why greatest?)

e an algorithm that computes this solution

Example:

128

Wanted:

e a greatest solution (why greatest?)

e an algorithm that computes this solution

Example:

A0] € 0
All] < (A[0JU{1})\Ezpr,
Alll € A

129

Wanted:

e a greatest solution (why greatest?)

e an algorithm that computes this solution

Example:

130

IOENIOENIAENS

Wanted:

e a greatest solution (why greatest?)

e an algorithm that computes this solution

Example:

131

NN NI IN

Wanted:

e a greatest solution (why greatest?)

e an algorithm that computes this solution

Example:

132

I NN IN

Wanted:

e a greatest solution (why greatest?)

e an algorithm that computes this solution

Example:

133

ARG AN AENIANNIAENIA

Wanted:

e a greatest solution,

e an algorithm that computes this solution.

Example:

Solution:

Al] = 0

All] = {1}
A2l = {l,z>1}
AB] = {1,z >1}
Al4] = {1}
AB] = {1,z > 1}

134

Observation:

e Again, the possible values for A[u| form a complete lattice:

D =2%"P" with By C By, iff By D By

e The order on the lattice elements indicates what is better
information,
more available expressions may allow more optimizations

135

Observation:

e Again, the possible values for A[u| form a complete lattice:

D =2%"P" with By C By, iff By D By

e The order on the lattice elements indicates what is better
information,
more available expressions may allow more optimizations

e The functions [k]* : D — D have the form f;z = a; Nz U b;.
They are called gen/kill functions — N kills, U generates.

e they are monotonic, 1.e.,

[k]*(B,) C [k]*(B,) iff B; C B,

136

The operations “o”, “LI” and “TT” can be explicitly defined by:

(fzofl)ili' = |a;Nas|NxU agmb1Ub2
(ilfo)z = |(aaUaz)|NaU b Ub,
(AN f)z = (a1 Ub)N(as Uby)|NaU| by N b

137

6.2 Removing Assignments to Dead Variables
Example:

1: T =1y + 2
2 Y = 0;
3 x =1y -+ 3;

The value of = at program points 1,2 is overwritten before it can
be used.

Therefore, we call the variable = dead at these program points.

138

Note:

— Assignments to dead variables can be removed.

— Such inefficiencies may originate from other transformations.

139

Note:

— Assignments to dead variables can be removed.

— Such inefficiencies may originate from other transformations.

Formal Definition:

The variable & 1iscalled liveat w« alongapath 7 startingat wu

if 7 canbe decomposedinto 7 = m kmy such that:

° k 1sause of 2 and

e m; doesnotcontain a definition of .

140

k

C 1 C C C

Thereby, the set of all defined or used variables at an edge
k= (_,lab,_) 1is defined by

lab used defined
: 0)
true (e) Vars (e))
false (e) Vars (e))

T =e; Vars (e) {x}
r = Mlel; Vars (e) {z}
Mlei] = ey; | Vars (e;) U Vars (e3) 0

141

A variable 2 which i1s not live at

u along 7.

Example:

Then we observe:

u along miscalled dead at

live

dead

w o= O

{y}

{v}

{z}
{z,y}
{z}
{z,y}

142

The variable « 1isliveat wif x 1sliveat wu along some path to
the exit . Otherwise, 2 1iscalled dead at w .

143

The variable «» i1sliveat «w 1if x 1sliveat w« along some path
to the exit. Otherwise, « 1s called dead at .

Question:

How can the sets of all dead/live variables be computed for every u?

144

The variable «» i1sliveat «w 1if x 1sliveat w« along some path
to the exit. Otherwise, « 1scalled dead at .

Question:

How can the sets of all dead/live variables be computed for every u?

Idea:

For every edge k = (u,_,v) , define a function [k]* which transforms
the set of variables that are live at © 1nto the set of variables that are
live at .

Note: Edge transformers go "backwards"!

145

Let L =2",
For k= (_lab,_),define [k]* = [lab]* by:

[P L = L

[true(e)]* L = [false(e)]* L = LU Vars(e)
[r =] L = (L\{z}) U Vars(e)

[v = M[e[[FL = (L\{z}) U Vars(e)

[Mley] =ex;]P L = LU Vars(e;) U Vars(es)

146

Let L =2",
For k= (_lab,_),define [k]* = [lab]* by:

Fr)

[true(e)]* L = [false(e)]* L = LU Vars(e)
[+ = e L = (L\{z}) U Vars(c)

[v = Mle}FL = (L\{z}) U Vars(e)

[Mle)] = e]*L = LU Vars(e;) U Vars(es)

[k]¥ can again be composed to the effects of [7]* of paths
™ =]Cl Ce]fr by

[7]F = k]P0 ... o [k]F

147

We verity that these definitions are meaningtul

148

We verity that these definitions are meaningtul

149

We verity that these definitions are meaningtul

150

We verity that these definitions are meaningtul

{y} {z,y} 0

151

We verify that these definitions are meaningful

152

We verify that these definitions are meaningful

153

A variable 1s live at a program point « 1f there 1s at least one path
from w« to program exit on which it is live.

The set of variables which are live at « therefore is given by:

L u] = U{[[W]]ﬂ@ |7 u =" stop}

No variables are assumed to be live at program exit.

As partial order for [weuse L = C. why?

So, the least upper bound is [J. why?

154

Transformation DE (Dead assignment Elimination):

& L]

155

Correctness Proof:

— Correctness of the effects of edges: If L 1is the set of variables
which are live at the exit of the path 7, then [n]*L is the set
of variables which are live at the beginning of 7.

— Correctness of the transformation along a path: If the value of a
variable 1s accessed, this variable 1s necessarily live. The value of
dead variables thus is irrelevant.

— Correctness of the transformation: In any execution of the
transformed programs, the live variables always receive the same
values as in the original program.

156

Computation of the sets L*[u] :

(1) Collecting constraints:

L[stop] 2 0
L|u) D [k]* (L[v]) k= (u,_,v) edge

(2) Solving the constraint system by means of RR iteration.
Since [1s finite, the iteration will terminate

(3) If the exit is (formally) reachable from every program
point, then the least solution £ of the constraint
system equals L* sinceall [k]* are distributive

157

Computation of the sets L*[u] :

(1) Collecting constraints:

L[stop] 2 0
L|u) D [k]* (L[v]) k= (u,_,v) edge

(2) Solving the constraint system by means of RR iteration.

Since [1s finite, the iteration will terminate

(3) If the exit is (formally) reachable from every program
point, then the least solution £ of the constraint system equals
L* sinceall [k]* are distributive.

Note: The information is propagated backwards!

158

Y S W S T S S S S G W G W A

159

S O =)

IV VN (O (O (O (O (O

(L[N} UL}
2\

s
(

D

(L
(L

L

=

|
|

)
LUy, R}

6
4
5

Uir}) U(L[3]U{r})
\wy) Uiz,)
\}) Uz}

= |

{y, R}
{z,y, R} | dito
{v,y, R}
{v,y, R}
{z,y, R}

{z, R}

{1. R}

S = W ke Ot DD O N

160

The left-hand side of no assignment 1s dead

Caveat:

Removal of assignments to dead variables may kill further variables:

r=1y-+1;
z2 = 2%I;
M|R] = y;

161

The left-hand side of no assignment 1s dead

Caveat:

Removal of assignments to dead variables may kill further variables:

r=1vy-+1;

z2 = 2%I;

M|R] = y;

162

The left-hand side of no assignment 1s dead

Caveat:

Removal of assignments to dead variables may kill further variables:

r=1y-+1;
x,y, IR

z2 = 2%I;

M|R] = y;

163

The left-hand side of no assignment 1s dead

Caveat:

Removal of assignments to dead variables may kill further variables:

y, R
r=y+1
z,y, R

z2 = 2%I;

& wh

M|R] = y;

(4) 0

164

The left-hand side of no assignment 1s dead

Caveat:

Removal of assignments to dead variables may kill further variables:

y, R (i)

r=1y+1; r=1y+1;
r,y, R

(2

z2 = 2%I; ‘ ;

® R ©
MR

M|R] = y;

@) ©

| =v;

165

The left-hand side of no assignment 1s dead

Caveat:

Removal of assignments to dead variables may kill further variables:

y, R G Y, R

r=1y+1; r=1y+1;

x,y, R e y, R
z2 = 2%I; ‘ ;

6 y, R 6 Y, R

M|R] = y; M|R] = y;

OR. @

166

The left-hand side of no assignment 1s dead

Caveat:

Removal of assignments to dead variables may kill further variables:

y, R 0 Y, R

r=y+ 1 r=y+ 1 ;

x,y, R e y, R
Z = 2%x; ‘ : ‘ ;

6 y7R 6 y’R 6

M|R] = y; M|R] = y; M|R] = y;

@) ¢ @ ¢ @

167

Re-analyzing the program is inconvenient

Idea: Analyze true liveness!

x 1s called truly live at « along a path 7, either

if 7 canbe decomposed into m = m k7 such that:

e £k 1satrueuseof ux;

e 7 doesnotcontain any definition of .

168

k

O——O—"——=0~0—0

The set of truly used variables at an edge & = (_, lab,v) is defined as:

lab truly used

: 0

true (e) Vars (e)

false (e) Vars (e)

T = e; Vars (e) (%)
r = Mlel; Vars (e) (%)
Mleq] = es; Vars(e1) U Vars(es)

(¥) —giventhat = istrulyliveat wv

169

Example:

r=1y+1;
Z = 2%
)

OO Oan©)

170

Example:

r =1+ 1;
Z = 2%

M|R] = y;

171

Example:

r =1+ 1;
Z = 2%

M|R] = y;

172

Example:

173

Example:
O
r =1+ 1;
Z = 2%

M|R] = y;

174

The Effects of Edges:

[L = L

[true(e)]* L = [false(e)]* L = LU Vars(e)
[r =] L = (L\{z})U Vars(e)
[v = Mle|;]FL = (L\{z})U Vars(e)
[Mle] = e]FL = LU Vars(e;) U Vars(es)

175

The Effects of Edges:

[]F L = L

[true(e)]* L = [false(e)]*L = LU Vars(e)
[+ =e]* L = (L\{z})U (x € L)? Vars(e): ()
[v = Mle|;]*L = (I\{z})U (z € L)? Vars(e): 0
[Mley| = e]FL = LU Vars(ey) U Vars(es)

176

Note:

e The effects of edges for truly live variables are more complicated
than for live variables

e Nonetheless, they are distributive !!

177

Note:

e The effects of edges for truly live variables are more complicated
than for live variables

e Nonetheless, they are distributive !!

To see this, consider for D=2Y, fy=(uecy)?b:) We
verify:

frUy) = (uey Uy)?b: 0
= (ueyVuecy)?b: 0
= (uey)?b: DU(uecy)?b:
= fyiU [y

178

Note:

e The effects of edges for truly live variables are more complicated
than for live variables

e Nonetheless, they are distributive !!

To see this, consider for D=2Y, fy=(uecy)?b:) We
verify:

fprUye) = (ue€yUy)?b: 0
= (ueyVuecy)?b: 0
= (u€y)?h: DU (u€Eys)?b: 0
= fyiU [y

—— the constraint system yields the MOP

179

e True liveness detects more superfluous assignments than repeated
liveness !!!

180

e True liveness detects more superfluous assignments than repeated
liveness !!!

Liveness:

() r=x—1;

181

e True liveness detects more superfluous assignments than repeated
liveness !!!

True Liveness:

r=x—1;

=

=

182

7 Interval Analysis

Constant propagation attempts to determine values of variables.
However, variables may take on several values during program execution.
So, the value of a variable will often be unknown.

Next attempt: determine an interval enclosing all possible values that a
variable may take on during program execution at a program point.

183

Example:

for (i = 04 < 42;i++)
if (0<iAi<42){
A=A+
M|A;] = 3;
}
// A start address of an array

// if-statement does array-bounds check

Obviously, the inner check is superfluous.

184

Idea 1:

Determine for every variable & the tightest possible interval of
potential values.

Abstract domain:

Il ={[l,u] |le ZU{—0},u € ZU{+o0},l < u}

Partial order:

11, u1] C [lg, ug] iff lo <l ANy < ug

185

Thus:

[ll,ul] L [12, ’UQ] = [ll |_|l2,’U,1 |_|’LL2]

l o
:ﬁ

186

Thus:

[ll, Ul] L [ZQ, ’UQ] = [ll [ZQ, U1 L UQ]
[ll, ul] [[ZQ, UQ] — [ll L lQ, Uq [UQ] whenever (ll L] lg) S (Ul [’U,Q)

ll U1

:_
ZQ U2

—

187

Caveat:

— [1s not a complete lattice,

— [has infinite ascending chains, e.g.,

0,00z 0,1l [-1,1]C [-1,2] ...

188

Caveat:

— [1s not a complete lattice,

— [has infinite ascending chains, e.g.,

0,00z 0,1l [-1,1]C [-1,2] ...

Description Relation:

z Al ul iff [<z<u

Concretization:

ylhu={2z€Z|l<z<u}

189

Example:

710,77 = {0,...,7}
v[0,00] = {0,1,2,...,}
Computing with intervals: Interval Arithmetic.
Addition:
[ll, Ul] —|—jj [lg, UQ] = [ll -+ ZQ, Uy + ’LLQ] where
— 0+ _ = —0
+o00+_ = +©

/| —oo+ oo cannot occur

190

Negation:

Multiplication:
[, u1] #* [lo,us] = [a,b) where
a = lils M l{us Muyls Muqgus
= il U ljus U ugls L ugus
Example:
[0,2] #* [3,4] = [0,8]
[—1,2] #* [3,4] = [~4,8]
[—1,2] %* [-3,4] = [-6,8]
[—1,2] #* [-4,-3] = [-8,4

191

Division: (1, uq] [*[lo, us] = |a, b]

e If O 1snotcontained in the interval of the denominator, then:

a = ll/lgﬂll/U2|—|ul/l2|—|U1/UQ
= ll/ZQUll/U2|_|Ul/l2|_|U1/’LL2

o If: [, <0< uy, wedefine:

la,b] = |—00,+00]

192

Equality:

(true if i =u; =1l = us

[, ur) =="[la,ug] = { false if w <lpyVuy <l

\ T otherwise

193

Equality:

(true if i =u; =1l = us
[, ur) =="[la,ug] = { false if w <lpyVuy <l
LT otherwise
Example:
42, 42]==F[42,42] = true
0,7==*[0,77 = T

[1,2]==F[3,4 = false

194

Less:

true 1if wup <l

1,] <! o, us] = < false if wuy <y

T otherwise

195

Less:

true 1if wup <l
11, uq] <! o, us] = < false if wuy <y
\ T otherwise

Example:

196

By means of [we construct the complete lattice:

Dy = (Vars — 1)

Description Relation:

p A D ifft D#L AN VaeeVars: (pz) A (D x)

The abstract evaluation of expressions is defined analogously to constant
propagation. We have:

(Te] p) A ([e]* D) whenever p A D

197

The Effects of Edges:

__,]]ﬁ D = D
[r =e]* D = D@ {rw [e]! D}
[v = Mle|;]*D = D&{rw— T}
“M[Gl] = 62;]]11 D =D
(L if definitely false
true (e)]* D = 9 ’
| D otherwise possibly true
(D if ossibly false
[false (e)]* D = 9 g ’
| L otherwise definitely true

... given that D # 1

198

Better Exploitation of Conditions:

L if false=[e]* D

1), otherwise

[Pos(e)]* D = {

where :

(D@ {o— (Do) ([e]f D)}
D = § D®{r— (Dx)M|—oc0,ul}
D@ {r— (D) N[l o0l}

199

fe=r==¢
ife=u < ey,fel]f D=1
ife=ux > e, [e]*D=[,_]

Better Exploitation of Conditions (cont.):

1 if false Z [¢]* D
1), otherwise

[Neg () D = {

where :

(Da{r— (Do) ([e]fD)} ife=a # e
Dy = ¢ Do {r— (Dx)N[-o0,ul} ife=a > e, [e]*
D& {r— (D) N[l o0l} ife=a < ey, [er]f

- ul
]

D
D

200

Example:

201

cOo J O Ot B W NN o= O

_ O O O O O

42

+00
42
41
41
41
41
42

42

Problem:

— The solution can be computed with RR-iteration —
after about 42 rounds.

— On some programs, iteration may never terminate.

Idea: Widening

Accelerate the iteration — at the cost of precision

202

Formalization of the Approach:

Let xigfi(xl,...,xn), 7::]_,...,71
denote a system of constraints over D
Define an accumulating iteration:

xi:$iufi($1,...,ﬂfn), ’1;21,...,71
We obviously have:

(a) x 1sasolution of (1) iff x 1s a solution of (2).

(b) The function G : D" — D" with

Gy, xn) = W1,y Yn), Y =x; U fi (2, ...

is increasing, i.e., xtC Gz forall zeD".

203

(1)

2)

, L)

(c)

(d)

The sequence G* L, k>0, isan ascending chain:

lCGLC...CGFLLC ...

If GFL=GF!L

=y, then v 1s a solution of (1).

If D has infinite strictly ascending chains, then (d) 1s not yet
sufficient ...

but: we could consider the modified system of equations:
v, =x; U fi(ry,...,x,), 1=1,....n (3)
for a binary operation widening:
L :D*—>D with v1 Uvy E vy Uuog

(RR)-1teration for (3) still will compute a solution of (1)

204

... Tor Interval Analysis:

e The complete lattice is: Dy = (Vars — 1),

e the widening U 1is defined by:

luD = DUl =D and for Dq # 1 # Ds:

(Dl L DQ) €r = (D1 I) L (D2 ZE) where
[ll, Ul] L [lg, Ug] = [l, U] with
(1 it 1, <l
l _ < 1 1 = 62
—o0 otherwise

Uq if U1 Z U9

|+ otherwise

—— Ll 1s not commutative !!!

205

Example:

0,20(1,2) = [0,
172|=1072 — :_0072]
1,5]0[3,7] = [1,+0

— Widening returns larger values more quickly.

d

It should be constructed in such a way that termination of iteration
1s guaranteed.

— For interval analysis, widening bounds the number of iterations by:

Hpoints - (1 4+ 2 - # Vars)

206

Conclusion:

e In order to determine a solution of (1) over a complete lattice
with infinite ascending chains, we define a suitable widening and
then solve (3)

e (Caveat: The construction of suitable widenings is a dark art !!!

Often U 1s chosen dynamically during iteration such that

— the abstract values do not get too complicated;

— the number of updates remains bounded ...

207

Our Example:

208

[U
0 || —oo | 400
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 1 1
7
8

Our Example:

209

0 N O Ot = W N = O

o o O O O

_ o o O o O

42
42

dito

... obviously, the result is disappointing.

Idea 2:

In fact, acceleration with L need only be applied at sufficiently many
places!

A set [1saloop separator, if every loop contains at least one point
from [

If we apply widening only at program points from such a set [, then
RR-iteration still terminates !!!

210

In our Example:

Neg(i < 42) Pos(i < 42)

Pos(0 < i < 42)

A1:A+i;

M[Al] = ’i;

211

{1} or
{2} or:
{3}

The Analysis with [= {1} :

212

o N O Ot k= W N = O

R O O O O O

—+00

O O O O O

_ o o o o O

42

+00

+00
41
41
41
41
42

—+00

dito

The Analysis with [= {2} :

1 4
[u [u [u
0| —oo | 400 || =00 | +00 || —00 | +00
1 0 0 0 1 0 42
2 0 0 0 | +oo 0 | +oo
3 0 0 0 41 0 41
4 0 0 0 41 0 41 | dito
5} 0 0 0 41 0 41
6 1 1 1 42 1 42
7 1 42 | +oo || 42 | +o0
8 1 42 42

213

Discussion:

e Both runs of the analysis determine interesting information,

e Therunwith [= {2} provesthatalways =42 after
leaving the loop.

e Onlythe runwith [= {1} finds, however, that the outer check
makes the inner check superfluous.

How can we find a suitable loop separator 7 7?7

214

Idea 3: Narrowing

Let z denote any solution of (1), i.e.,
lefz@a i::la'":n

Then for monotonic f;

// Narrowing Iteration

215

¢t J Fg 3 F*x 3...0 FFge O...

Idea 3: Narrowing

Let z denote any solution of (1), i.e.,
x’LQfZia 7;:1,...,72

Then for monotonic f; ,

// Narrowing Iteration

Every tuple F*z isasolutionof (1)
—

Termination is no problem anymore:
we stop whenever we want

// The same also holds for RR-iteration.

216

¢ J Fzg O F?x 2...0 FFpe O...

Narrowing Iteration in the Example:

217

0 N O Ot = W N = O

o o O O O

42
42

+00
+00
+00
+00
+00
+00
+00

Narrowing Iteration in the Example:

218

0 N O Ot = W N = O

o o O O O

42
42

+00
+00
+00
+00
+00
+00
+00

_ o o O o O

42

Narrowing Iteration in the Example:

219

0 N O Ot = W N = O

o o O O O

42
42

+00
+00
+00
+00
+00
+00
+00
+00

_ o o O o O

42

_ o O O O O

42

42
41
41
41
41
42

42

Discussion:

We start with a safe approximation.
We find that the inner check is redundant :-)

We find that at exit from the loop, always ¢ = 42

L]

It was not necessary to construct an optimal loop separator

Last Question:

220

