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A Short History of Static Program Analysis

e Early high-level programming languages were implemented on very
small and very slow machines.

e Compilers needed to generate executables that were extremely
efficient in space and time.

e Compiler writers invented efficiency-increasing program
transformations, wrongly called optimizing transformations.

e Transformations must not change the semantics of programs.
e Enabling conditions guaranteed semantics preservation.

e Enabling conditions were checked by static analysis of programs.



Theoretical Foundations of Static Program Analysis

e Theoretical foundations for the solution of recursive equations:
Kleene (1930s), Tarski (1955)

e Gary Kildall (1972) clarified the lattice-theoretic foundation of
data-flow analysis.

e Patrick Cousot (1974) established the relation to the
programming-language semantics.



Static Program Analysis as a Verification Method

e Automatic method to derive invariants about program behavior,
answers questions about program behavior:
— will index always be within bounds at program point p?
— will memory access at p always hit the cache?

e answers of sound static analysis are correct, but approximate:
don’t know 1is a valid answer!

e analyses proved correct wrt. language semantics,



Proposed Lectures Content:

1. Introductory example: rules-of-sign analysis
theoretical foundations: lattices

an operational semantics of the language
another example: constant propagation

relating the semantics to the analysis—correctness proofs

AR

some further static analyses in compilers: Elimination of superfluous
computations

— available expressions
—  live variables

— array-bounds checks



1 Introduction

... 1n this course and in the Seidl/Wilhelm/Hack book:

a simple imperative programming language with:

variables

R =¢;

R = Milel;
Me1] = e3;

if (e) s; else sy
goto L;

//
//
//
//
//
//

registers

assignments

loads

stores

conditional branching

no loops

Intermediate language into which (almost) everything can be compiled.

However, no procedures.

So, only intra-procedural analyses!



2 Example: Rules-of-Sign Analysis

Starting Point: Questions about a program, mostly at a particular program
point:

e May variable x have value 0 when program execution reaches this
program point? —  Attempt to exclude division by 0.

e May x have a negative value? ——  Attempt to exclude sqrt of a
negative number.

Solution: Determine at each program point the sign of the values of all
variables of numeric type.

Determines a sound, but maybe approximate answer.



Example program represented as control-flow graph

1: x = 0; y

2:y = 1; _

3: while (y > 0) do

4 - v = v + x; true(y>0) false(y>0)
St x =x + (-1); @

Y = y+X

&)

X = X+(-1)




All the ingredients:
e a set of information elements, each a set of possible signs,

e a partial order, “C”, on these elements, specifying the relative
strength” of two information elements,

e these together form the abstract domain, a lattice,

e functions describing how signs of variables change by the execution
of a statement, abstract edge effects,

e these need an abstract arithmetic, an arithmetic on signs.



We construct the abstract domain for single variables starting with the
lattice  Signs = 2104} with the relation “C” =“C”.

{'!0:"'}

{'=+}

{

} {0} {+}

«»
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The analysis should ”bind” program variables to elements in Signs.
So, the abstract domain is D = ( Vars — Signs) 1, a Sign-environment.
| € D is the function mapping all arguments to { }.

The partial order on D is D, C D, iff
D=1 or
Dyx 2 Dy (v € Vars)

Intuition?
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The analysis should ”bind” program variables to elements in Signs.
So, the abstract domain is D = ( Vars — Signs) . a Sign-environment.
| € D is the function mapping all arguments to { }.

The partial order on D is D, C D, iff
D=1 or
Dyx 2 Dy (v € Vars)

Intuition?

D 1s at least as precise as [, since Do admits at least as many signs as
D,
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How did we analyze the program?

N
o In particular, how did we walk the
lattice for y at program point 5?

true(y>0) false(y>0)

&

y = y+X

X = X+(-1)
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How 1s a solution found?

Iterating until a fixed-point 1s reached

true(y>0) false(y>0)

Y = y+X

X = X+(-1)

\4

O
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Idea:

e  We want to determine the sign of the values of expressions.
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Idea:

e  We want to determine the sign of the values of expressions.

e For some sub-expressions, the analysis may yield {+,—,0},
which means, it couldn’t find out.
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Idea:

e  We want to determine the signs of the values of expressions.

e For some sub-expressions, the analysis may yield {+,—,0},
which means, it couldn’t find out.

e We replace the concrete operators [  working on values by
abstract operators O working on signs:

17



Idea:

e  We want to determine the signs of the values of expressions.

e For some sub-expressions, the analysis may yield {+,—,0},
which means, it couldn’t find out.

e We replace the concrete operators [  working on values by
abstract operators O working on signs:

e The abstract operators allow to define an abstract evaluation of
expressions:

[e]* : (Vars — Signs) — Signs

18



Determining the sign of expressions in a Sign-environment is defined by
the function | | : Fxp x SignEnv — Val

[ {+} ifc>0
[[C]]ﬂD = q {—} ifc<0

| {0} ifc=0
[v]? = D(v)
[e.Oe]! D = [e]! DO*[es]* D
[Oe]* D = DOf[e]* D

A remark about the notation:
[ 1 is given in a "distributed” form; its first argument appears between the
brackets, the second follows the brackets.
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Abstract operators working on signs (Addition)

{-,

_|_#

10}

+}

-1

0}

{-,

+}

10, +}

{_a 09 +}

{0}
{+}
{-1
- 0}
- +}
0, +}
{- 0, +}

10}

{_, Oa +}

{+}
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Abstract operators working on signs (Multiplication)

x ¥ 10} t+} 1=}
10} 10} 10} 10}
t+} 10} i+} =1
{—1 {0} {—1 +1
{=0p | {0} {=0} {0, +}
{—=+} | {0} (= +} {— +}
10, +} 0} 10, 4] {— 0}
(=0, +} | 10} {=0,+} (= 0,4}

Abstract operators working on signs (unary minus)

_ 7

{0}

{+}

{-

{_a O}

{_9 +}

{0, +}

{_9 Oa +}

{0}

-}

(+}

{+, 0}

{_’ +}

{O’ _}

{_’ Oa +}
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Working an example: D={rw={+}y—={+}}

[z + 7] D = [«]*D +* [7]* D
= {+F + {4
= {+}

[+ + (9D = {+} + (-*y[ D)
= D
= {+} + {-}
= {+ -0}
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[lab]* is the abstract edge effects associated with edge k.
It depends only on the label lab:

__,]]ﬂ D = D

[true (e)]* D = D

[false (e)]* D = D

[r =e]* D = D@ {rw~ [e]f D}

[v = Me|;]!D = D&{rw {+ —,0}}
[Mle)] =ex]*D = D

... whenever D +# 1

These edge effects can be composed to the effect of apath m = k; ... k.
[7]F = [k P o... o [k]?
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Consider a program node v:

—  For every path 7 from program entry start to v the analysis should
determine for each program variable x the set of all signs that the
values of z may have at v as a result of executing 7.

—  Initially at program start, no information about signs is available.

—  The analysis computes a superset of the set of signs as safe

information.

—— For each node v, we need the set:

Sl = | H[=IT | 7w start —* v}
where T is the function bindig all variables to {—, 0, +}.

This function describes that we don’t know the sign of any variable at
program entry.

24



Question:

How do we compute S[u] for every program point «?

25



Question:

How can we compute S|u| for every program point «?

Collect all constraints on the values of S|u| into a system of constraints:

S|start]
Sl 2 [k (S[ul) k= (u,_,v) edge

U
—

26



Wanted:

e aleastsolution (why least?)

e an algorithm that computes this solution

Example:
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3 An Operational Semantics

Programs are represented as control-flow graphs.

Example:
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void swap (int i, int 7J) {

int t; Rle[z‘h]
it (af1] > al3l) o Az = Ao+ 1%
t = alJl;
aljl = al1i]; Ro = M[A;]
ali] = t; Neg (R1 > R2) \Pos (R1 > R2)
: |
Az = Ao + 1% j;
}

30



Thereby, represent:

vertex

program point

start

program start

stop

program exit

edge

labeled with a statement or a condition
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Thereby, represent:

vertex | program point
start program start
stop program exit
edge step of computation
Edge Labelings:
Test : Pos (e) or Neg (e) (better true(e) or false(e))
Assignment : R = ¢;
Load : R = Mlel;
Store : Mle;] = es;

Nop :

)
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Execution of a path is a computation.

A computation transforms a state s = (p, ) where:

p: Vars — int

values of variables (contents of symbolic registers)

(N — int

contents of memory

Every edge k = (u, lab, v) defines a partial transformation

of the state:

[k] = [iab]

33




[ ] (o, )

[true (e)] (p, p
[false (e)] (p, 1)

~
N——

(p, 1)

> >
S
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L1 (o 1) = (p, 1)

[true (e)] (p, ) = (p, 1) if |

[false (e)] (p, ) = (p. 1) if [
// [e] : evaluation of the expression e, e.g.
/e +yl{e =T y— -1} =6
) M ==4){zr—5} =1
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1 Cos 1) = (p)

[true (e)] (p, ) = (p, ) if [e] p # 0

[false ()] (p, ) = (p,11) if [e] p=0
// le] : evaluation of the expression e, e.g.

[/ lz+y{z = Ty— -1} =0
J e ==4){z =5} =1

[R=¢;](p,n) = (pD{R— [e]p},n)

// where “@” modifies a mapping at a given argument
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N

[R=Mlel;] (p,n) = (p@{R= u(le]p))}, )

[Mlei] = eo; ] (o, 1) = (o[ n D {[er] p = le2] p} )

Example:

[z =2+ L] ({z— 5}, 1) = (p,n) where

p = {x—5}d{r—[z+1]{x— 5}}
= {r—5}d{r— 6}
= {x— 6}

A path 7= Fkiky...k, definesacomputation in the state s if

s € def ([kn]o...o[k])

The result of the computationis || s = ([kn] o...0[ki]) s

37



The approach:

A static analysis needs to collect correct and hopefully precise
information about a program in a terminating computation.

Concepts:
e partial orders relate information for their contents/quality/precision,
e least upper bounds combine information in the best possible way,

e monotonic functions preserve the order, prevent loss of collected
information, prevent oscillation.
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4 Complete Lattices

A set D together with arelation L C D x D  1s a partial order if for
all a,b,c € D,

aC a reflexivity
aCbANDCEa = a=0b anti—symmetry
aCObADCE c — alc transitivity

Intuition: £ represents precision.

By convention: a C b means a is at least as precise as b.
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Examples:

1. D = 2t%bc} with the relation “C” :

40



Examples:
1. The rules-of-sign analysis uses the following lattice D = o104}
with the relation “C” :

{-} {0} {+}
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2. 7 with the relation “="":

2. /7 with the relation “<” :

Bomal

oY

3. 7, = 7 J{L1} with the ordering:

42



d € D 1s called upper bound for X C D if

rLCd forallx € X
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d € D 1s called upper bound for X C D if

rCd forallz € X

d is called least upper bound (lub) if
1. d is an upper bound and

2. d C y for every upper bound y of X.
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d € D 1s called upper bound for X C D if

rCd forallz € X

d is called least upper bound (lub) if
1. d is an upper bound and
2. d C y for every upper bound y of X.

The least upper bound is the youngest common ancestor in the pictorial
representation of lattices.

Intuition: It is the best combined information for X.

Caveat:

e {0,2,4,...} C Z has no upper bound!
e {0,2,4} C 7 has the upper bounds 4, 5,6, . ..
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A partially ordered set D 1s a complete lattice (cl) if every subset
X CD hasaleastupper bound | |X € D.

Note:

Every complete lattice has

— aleastelement | =[]0 € D;
— agreatestelement T =||D € D.
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Examples:

1. D = 2{=0%*} with T is a complete lattice
2. D = Z with “<” 1s not a complete lattice.
3. D = 7, is also not a complete lattice

4. With an extra element T, we obtain the flat lattice
7, =7U{L, T}

47



Theorem:

If D 1sacomplete lattice, then every subset X C D has a greatest
lower bound [ ]X.

48



Back to the system of constraints for Rules-of-Signs Analysis!

S|start] 3 T
S|v] 3 [k]* (S[u]) k= (u,_,v) edge

Combine all constraints for a variable v by least-upper-bound operator | |:
Sl 3 IR (SI) | £ = (u,_,v) edge}

Our generic form of the systems of constraints:

v, 2 filw, ..., Tn) ()

Relation to the running example:

T; unknown here:  S[u]
D values here: Stigns

C C DxD ordering relation here: C

fi: D™ = D constraint here:
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A mapping f:D; — Dy 1is called monotonic (order preserving)
if f(a)C f(b) forall aCb.
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A mapping f:D; — Dy 1is called monotonic (order preserving)
if f(a)C f(b) forall aCb.

Examples:

(1) D;=Dy=2Y forasetUand fz= (zNa)Ub.

Obviously, every such f is monotonic
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A mapping f:D; — Dy 1is called monotonic (order preserving)
if  f(a)C f(b) forall aLCb.

Examples:

(1) D;=Dy=2Y forasetUand fz= (zNa)Ub.
Obviously, every such f is monotonic

(2) Dy = Dy = Z (with the ordering “<”’). Then:

° Incx =x +1 1s monotonic.

° decx =x — 1 1s monotonic.
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A mapping f:D; — Dy 1is called monotonic (order preserving)
if  f(a)C f(b) forall aLCb.

Examples:

(1) D;=Dy=2Y forasetUand fz= (zNa)Ub.

Obviously, every such f is monotonic

(2) Dy = Dy = Z (with the ordering “<”’). Then:

° Incx =x +1 1s monotonic.
° decx =x — 1 1s monotonic.

° INVZ = —x 1S not monotonic
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Theorem:

If fi:Dy —-Dy and fy:Dy — D3 are monotonic, then also
Jao f1: Dy — Ds

Theorem:

If D isacomplete lattice, then the set |S — D| of functions
f: 85— D isalsoacomplete lattice where

fCg iff fxCgax forallz € Dy
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Theorem:

If fi:Dy —-Dy and fy:Dy — D3 are monotonic, then also
Jao f1: Dy — Ds

Theorem:

If D isacomplete lattice, then the set |S — D| of functions
f: 85— D isalsoacomplete lattice where

fCg iff fxCgax forallz € Dy

In particular for F C [S — Dy,

|_|F:f with fx:U{gx\geF}
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Wanted:

where all

least solution for:

Zﬁigfi(ﬂfl,...,lljn), 221,

f; : D™ — D are monotonic.
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Wanted: least solution for:

Zﬁigfi(ﬂfl,...,lljn), 221,

where all f; : D" — D are monotonic.

Idea:

e Consider F :D"™ — D™ where

F(xy,...,20) = (Y1, -, Yn)

57

with  y, = fi(z1,...,2,).



Wanted: least solution for:

:E,-in(azl,...,a:n), 7;:1,...,7’2, (*)

where all f; : D" — D are monotonic.

Idea:

e Consider F :D"™ — D™ where

F(xy,...,x0) = (Y1,.-.,yn) With 1y, = fi(x1,...,2,).

e Ifall f; aremonotonic,thenalso F
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Wanted: least solution for

in;fi(l'l,...,ﬂfn), izl,...,n (*)

where all f; : D" — D are monotonic.

Idea:

e Consider F' :D™ — D™ where

F(xy,...,x) = (Y1,---,Yyn) Wwith 1y, = fi(x1,...,2,).
e Ifall f; aremonotonic,thenalso F

e  We successively approximate a solution from below. We construct:

L, FL1, F*1, F°l,
Intuition: This iteration eliminates unjustified assumptions.
Hope: We eventually reach a solution!
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Theorem

e | F1 F?*1, .. formanascending chain:

1l C F.l1 C F*1L C

o If FF1 =FFT11, Fistheleastsolution.

e If all ascending chains are finite, sucha k& always exists.

60



Proof

The first claim follows by induction:

Foundation: F' L =1 C F!' L

Step: Assume [ ' 1 T F'1l. Then
Fil=F(F'1)CF(F1)=F+_1

since [ monotonic
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Step: Assume F*'1 T F'1l. Then
Fil=FF 'O CF((F1L)=F"T"_1

since [ monotonic

Conclusion:

If D 1is finite, a solution can be found that is definitely the least
solution.

Question: What,if D is not finite?
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Theorem Knaster — Tarski

Assume [D 1is a complete lattice. Then every monotonic function
f: D — D has aleast fixed point dy € D.

Remark:

The least fixed point dy 1sin P and a lower bound

—— dp 1S the least value z

Application:
Assume r; J fi(xy,...,x,), i=1,...,n (%)

is a system of constraints where all f; : D" — D are monotonic.

——> least solution of (x) = least fixed point of F’
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Conclusion:

Systems of inequalities can be solved through fixed-point iteration, i.e.,
by repeated evaluation of right-hand sides
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Caveat: Naive fixed-point iteration is rather inefficient

Example:

>

true(y>0) false(y>0)

&

y = y+X

X = X+(-1)
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Idea: Round Robin Iteration

Instead of accessing the values of the last iteration, always use the current
values of unknowns

Example:

66



\4

true(y>0)

y = y+X

&)

X = X+(-1)

false(y>0)

O

67




The code for Round Robin Iteration in Java looks as follows:

for (i = 1;¢ < nji++) z; = L;
do {
finished = true;
for (2 = 1;¢0 < nji++) {
new = fi(r1,...,T,);
if (W(z; 3 new)) {
finished = false;

T, = x; U new;

}
} while (1finished);
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What we have learned:

e The information derived by static program analysis is partially
ordered in a complete lattice.

e the partial order represents information content/precision of the lattice
elements.

e least upper-bound combines information in the best possible way.

e Monotone functions prevent loss of information.
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For a complete lattice D, consider systems:

Istart] 3 dg
If] 3 [RFEWR)  k=(u_v) edge

where dy €D andall [k]*:D— D are monotonic ...
Wanted: MOP (Merge Over all Paths)

T[] = | {In)*do | = : start —* v}

Theorem Kam, Ullman 1975

Assume 7 1s asolution of the constraint system. Then:

Zv] 3 I%v] for every v
In particular: Z[v] 3 [r]*d, for every 1 : start —* v
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Disappointment: Are solutions of the constraint system just upper
bounds?

Answer: In general: yes
Notable exception, if all functions [k]* are distributive.

The function f:D; — Dy 1s called distributive, if

FUX)=||{fz]|xze X} forall ) # X C D;

Remark: If f : D; — Dy 1is distributive, then it is also monotonic

Theorem Kildall 1972

Assume all v are reachable from srart.

Then: If all effects of edges [k]* are distributive, Z*[v] = Z[v] holds for
all v.

Question: Are the edge effects of the Rules-of-Sign analysis distributive?
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5 Constant Propagation

(Goal: Execute as much of the code at compile-time as possible!

Example:

if (x> 0)
M|A] = B;
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Obviously, x has always the value 7

Thus, the memory access is always executed

Goal:
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Obviously, x has always the value 7

Thus, the memory access is always executed

Goal:
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Idea:

Design an analysis that for every program point « determines the
values that variables definitely have at  w;

As a side effect, it also tells whether w© can be reached at all
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Idea:

Design an analysis that for every program point  u, determines the
values that variables definitely have at  w;

As a side effect, i1t also tells whether w© can be reached at all

We need to design a complete lattice and an abstract semantics for this
analysis.

It abstracts from the variable binding of the state, p : Vars — int, in a
similar way as the Rules-of-Sign analysis.
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As 1n the case of the Rules-of-Signs analysis the complete lattice 1s
constructed in two steps.

(1) The potential values of variables:

7' =7U{T} with 2Cy iffy=Torz=y
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Caveat: Z' isnotacomplete lattice in itself

2) D= (Vars =2"), = (Vars = Z")U{Ll}
// L denotes: “not reachable”

with Dy C Dy, iff 1 =D, or
DyxE Dyx (v € Vars)

Remark: D isacomplete lattice
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For every edge k = (_, lab,_) , construct an effect function
[£]¥ = [lab]* : D — D which simulates the concrete computation.

Obviously, [lab]* L = L forall lab
Nowlet 1 # D¢ Vars —7".
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Idea:

e Weuse D todetermine the values of expressions.
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Idea:

e Weuse D todetermine the values of expressions.

e For some sub-expressions, we obtain T
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Idea:

e Weuse D todetermine the values of expressions.
e For some sub-expressions, we obtain T

—

As in the Rules-of-Sign analysis, we replace the concrete operators
O by abstract operators Of thatcan handle T :

T if a=Torb=T
a0 ph =
a b otherwise
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Idea:

e Weuse D todetermine the values of expressions.
e For some sub-expressions, we obtain T
—

As in the Rules-of-Sign analysis, we replace the concrete operators
O by abstract operators Of thatcan handle T :

T if a=Torb=T
a0 ph =
a b otherwise

e The abstract operators allow to define an abstract evaluation of
expressions:

[e]* : (Vars = Z7") = Z"
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Abstract evaluation of expressions is like the concrete evaluation — but
with abstract values and operators. Here:

[c]* D = ¢
[e.Oe]! D = [e]f DO [es]* D

... analogously for unary operators
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Abstract evaluation of expressions is like the concrete evaluation — but
with abstract values and operators. Here:

[c]* D = ¢
[e.Oe]! D = [e]f DO [es]* D

... analogously for unary operators
Example: D={rw—2,y—~T}

[« +7]*D = [2]*D +* [7)* D
= 2487
= 9

[t —y]*D = 2 -FT
= T
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Thus, we obtain the following abstract edge effects  [lab]* :

[]f D = D

(L if 0=[c]*D definitely false
[true (¢)]* D = 3 I°] 4

| D otherwise possibly true
_ (D if 0C[e]fD possibly false
false (e)]* D = =[] P 4
' | L otherwise definitely true
x = e D = D@ {rw [e]* D}
= Mle|.]*D = Do{rw— T}
:M[Gl] — GQ;Hﬂ D =D

... whenever D =# 1
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At start, wehave Dy ={x— T |z € Vars}.

Example:
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At start, wehave Dt ={z+— T |x € Vars}.

Example:
1| {z—T}
2 | {x > T}
3 {x—T7}
4 | {r— T}
51 Lu{e—=7t={r— T}

The abstract effects of edges [k]* are again composed to form the
effects of paths 7 =Fk;... k. by:

(7]t = [k ]Jfo...o[k]f :D—D
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Idea for Correctness: Abstract Interpretation
Cousot, Cousot 1977

Establish a description relation A  between the concrete values and
their descriptions with:

xAa; N agCay — zAa

Concretization: vya={z|zAa}
//  returns the set of described values
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(1) Values: A CZx7Z'
zAa iff z=aVa=T

Concretization:

{fa} if aCC T
Ta =
Z if a=T
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(1) Values: A CZx7Z'
zAa iff z=aVa=T

Concretization:

{fa} if aCC T
Ta =
Z if a=T

(2) Variable Bindings: A C (Vars = Z) x (Vars = Z"),

pAD iff D#1L A pxrC Dz (ve Vars)

Concretization:

Do 0 if D=1
! {p|Va: (pz) A(Dx)} otherwise
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Example: fr—=1y— =T} Ao T,y— =7}

(3) States:

A C ((Vars = 2Z) x (N—= 2Z)) x (Vars = 2Z"),
(p, ) A D iff oA D

Concretization:

D_ 0 if D=1
! {(p,p) |Vx: (px) A(Dz)} otherwise
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We show correctness:

(%)

It

sA D and

[7] s is defined, then:

(7] s) A ([7FF D)

7]
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The abstract semantics simulates the concrete semantics

In particular:
[7] s € v ([=]* D)
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The abstract semantics simulates the concrete semantics

In particular:
[7] s € v ([=]* D)

In practice, this means for example that D x = —7 1mplies:

—7 forall p e~D

plx
— pv = —7 for (p1,_)=[n]s
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The MOP-Solution:
D*|v] = |_|{[[7T]]jj D+ | 7 start =" v}

where Drax=T (x € Vars) .

In order to approximate the MOP, we use our constraint system
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Example:
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Example:
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Ly
oy T T
Ly10 | T
2110 1
31 10| 1
411 10 | 10
51 9 |10
6
7




Example:
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Loy Ly
oy T T | T|T
L1} 7 |10 T
2011001 (T | T
1001 T | T
A 1010 T | T
S 9 (10 T | T
6 T 1T
7 T 1T




Example:

3

Loy LAY Ty
O T | T T |T
L1000} 7 10| T
2011001 (T |T
101 T | T
41110 {10 || T | T || dito
S5 9 (10 T | T
6 T | T
7 T | T

100




Concrete vs. Abstract Execution:

Although program and all initial values are given, abstract execution does
not compute the result!

On the other hand, fixed-point iteration 1s guaranteed to terminate:

For n program points and 7 variables, we maximally need:
n-(m+1) rounds

Observation: The effects of edges are not distributive!
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Counterexample:

Then fD1 L fD2

1R N

= [v=z+y]f

{z+— 2,y 3}
{3,y — 2}

{r—=5y—3tUu{r—5y— 2}
{r—5y—T}
{r—T,y— T}
flr— T, y— T}

f (DU Dy)
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We conclude:

The least solution D of the constraint system in general yields only an
upper approximation of the MOP, 1.e.,

D*[v] & D[v]
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We conclude:

The least solution D of the constraint system in general yields only an
upper approximation of the MOP, 1.e.,

D*[v] & D[v]

As an upper approximation, D[v] nonetheless describes the result of
every program execution 7 thatreaches v :

(Il (o 1)) A (D[v])

whenever x| (p, ) is defined
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6 Removing superfluous computations

A computation may be superfluous because

e the result is already available, — available-expression analysis, or

e the result 1s not needed — live-variable analysis.
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6.1 Redundant computations

Idea:

If an expression at a program point is guaranteed to be computed to the
value it had before, then

—  store this value after the first computation;

—  replace every further computation through a look-up

Question to be answered by static analysis: Is an expression
available?
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Problem: Identify sources of redundant computations!

Example:
z = 1;
y = MI7};
A T = |y+ 2|
B To = |Y+ 2z

B 1s a redundant computation of the value of |y + z |, if

(1) A is always executed before B; and

(2) y and z at B have the same values as at A
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Situation: The value of = + y is computed at program point
X+y

7
O
and a computation along path 7 reaches v where 1t evaluates again « + y
If x and y have not been modified in 7, then evaluation of x + y at v

returns the same value as evaluation at .

This property can be checked at every edge in .
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Situation: The value of = + y is computed at program point
X+y
O—"—=@®
and a computation along path 7 reaches v where it evaluates again x + y

.... If z and y have not been modified in 7, then evaluation of = + vy at v 1s
known to return the same value as evaluation at u

This property can be checked at every edge in 7.

More efficient: Do this check for all expressions occurring in the
program in parallel.

Assume that the expressions A = {e, ..., e} are available at u.
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Situation: The value of = + v is computed at program point u
X+y
-
OO
and a computation along path 7 reaches v where it evaluates again © + y

.... If x and v have not been modified in 7, then evaluation of « + y at v
must return the same value as evaluation at .

This property can be checked at every edge in 7.

More efficient: Do this check for all expressions occurring in the
program in parallel.

Assume that the expressions A = {eq,...,e,.} are available at u.

Every edge k transforms this setinto a set  [k]* A of expressions
whose values are available after execution of £.

[K]¥ A is the (abstract) edge effect associated with k
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These edge effects can be composed to the effect of apath m = k; ... &k,

[7]F = [k, ]Fo. ..o [ki]?
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These edge effects can be composed to the effect of apath m = k; ... &k,

[7]F = [k, ]Fo. ..o [ki]?

The effect [k]* ofanedge Kk = (u,lab,v) only depends on the
label lab, ie., [k]* = [lab]*
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These edge effects can be composed to the effect of a path m = £y ... k.
[7]F = [k ] oo [la]

The effect [k]* ofanedge Kk = (u,lab,v) only depends on the
label [ab, i.e., [k]* = [lab]* where:

[]F A = A
[true(e)]* A = [false(e)]* A = AuU{e}
[r=¢e]*A = (AU{e})\Ezpr, where

Ezpr, all expressions that contain

[v = M[e][FA = (Au{e})\Eapr,
[Mle,] =ex]FA = AU{er, e}
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—  An expression is available at v 1f 1t 1s available along all paths 7 to
V.

—  For every such path 7, the analysis determines the set of
expressions that are available along 7.

1

Initially at program start, nothing is available.

—  The analysis computes the intersection of the availability sets as
safe information.

—— For each node v, we need the set:

Alv] = ﬂ{[[ﬂ]]ﬂ@ | 72 start = v}
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How does a compiler exploit this information?
Transformation UT (unique temporaries):

We provide a novel register 7. as storage for the values of e:
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Transformation UT (unique temporaries):

We provide novel registers 7, as storage for the value of e:

T = €; ﬁ T, = e;
r =T,

Neg (e) Pos (e) ﬁ ?Te

Neg (7,) Pos (T¢)

... analogously for R = Mle|; and Mle;| = es;.
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Transformation AEE (available expression elimination):

If e 1s available at program point u, then e need not be re-evaluated:

We replace the assignment with Nop.
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Example:

Y + 3;

Y + 3;

118

r =1y -+ 3;
x="T;
2 =1y 4+ 3;



Example:

Y + 3;

Y + 3;
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Example:

r = y-+3;
x = T
z = y—+3;
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Example:

r = y-+3;
x = T
z = y—+3;
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Warning:

Transformation UT 1s only meaningful for assignments & = e; where:

—  x & Vars(e); why?
— e & Vars; why?

—  the evaluation of e 1s non-trivial; why?
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Warning:

Transformation UT is only meaningful for assignments & = ¢; where:

—  x ¢ Vars(e); otherwise e is not available afterwards.
— e ¢ Vars; otherwise values are shuffled around

—  the evaluation of ¢ is non-trivial; otherwise the efficiency of the
code 1s decreased.

Open question ...
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Question:

How do we compute A|u| for every program point ?
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Question:

How can we compute A|u] for every program point?

We collect all constraints on the values of A|u| into a system of

constraints:

YRS
= w
—
Q
=
S
N 1N
= S
[ —]
~—~
p=
S
N——"

k= (u,_,v) edge
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Question:

How can we compute A|u] for every program point?
Idea:

We collect all constraints on the values of A|u| into a system of
constraints:

N
< "»
— N
)
=
S
N 1N
— =

k]* (Alu]) k= (u,_,v) edge

Why C?

Then combine all constraints for each variable v by applying the
least-upper-bound operator —

Al < ({IK] [) [k =(u,_v) edge;
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Wanted:

e a greatest solution (why greatest?)

e an algorithm that computes this solution

Example:
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Wanted:

e a greatest solution (why greatest?)

e an algorithm that computes this solution

Example:
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Wanted:

e a greatest solution (why greatest?)

e an algorithm that computes this solution

Example:

A0] € 0
All] < (A[0JU{1})\Ezpr,
Alll € A
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Wanted:

e a greatest solution (why greatest?)

e an algorithm that computes this solution

Example:
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Wanted:

e a greatest solution (why greatest?)

e an algorithm that computes this solution

Example:
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Wanted:

e a greatest solution (why greatest?)

e an algorithm that computes this solution

Example:
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Wanted:

e a greatest solution (why greatest?)

e an algorithm that computes this solution

Example:
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Wanted:

e a greatest solution,

e an algorithm that computes this solution.

Example:

Solution:

Al] = 0

All] = {1}
A2l = {l,z>1}
AB] = {1,z >1}
Al4] = {1}
AB] = {1,z > 1}
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Observation:

e  Again, the possible values for A[u| form a complete lattice:

D =2%"P" with By C By, iff By D By

e The order on the lattice elements indicates what is better
information,
more available expressions may allow more optimizations
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Observation:

e  Again, the possible values for A[u| form a complete lattice:

D =2%"P" with By C By, iff By D By

e The order on the lattice elements indicates what is better
information,
more available expressions may allow more optimizations

e The functions [k]* : D — D have the form f;z = a; Nz U b;.
They are called gen/kill functions — N kills, U generates.

e they are monotonic, 1.e.,

[k]*(B,) C [k]*(B,) iff B; C B,
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The operations “o”, “LI” and “TT” can be explicitly defined by:

(fzofl)ili' = |a;Nas|NxU agmb1Ub2
(ilfo)z = |(aaUaz)|NaU b Ub,
(AN f)z = (a1 Ub)N(as Uby)|NaU| by N b
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6.2 Removing Assignments to Dead Variables
Example:

1: T =1y + 2
2 Y = 0;
3 x =1y -+ 3;

The value of = at program points 1,2 is overwritten before it can
be used.

Therefore, we call the variable = dead at these program points.
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Note:

—  Assignments to dead variables can be removed.

—  Such inefficiencies may originate from other transformations.

139



Note:

—  Assignments to dead variables can be removed.

—  Such inefficiencies may originate from other transformations.

Formal Definition:

The variable & 1iscalled liveat w« alongapath 7 startingat wu

if 7 canbe decomposedinto 7 = m kmy such that:

° k 1sause of 2 and

e m; doesnotcontain a definition of .
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k

C 1 C C C

Thereby, the set of all defined or used variables at an edge
k= (_,lab,_) 1is defined by

lab used defined
: 0 )
true (e) Vars (e) )
false (e) Vars (e) )

T =e; Vars (e) {x}
r = Mlel; Vars (e) {z}
Mlei] = ey; | Vars (e;) U Vars (e3) 0
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A variable 2 which i1s not live at

u along 7.

Example:

Then we observe:

u along miscalled dead at

live

dead

w o= O

{y}

{v}

{z}
{z,y}
{z}
{z,y}
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The variable « 1isliveat wif x 1sliveat wu along some path to
the exit . Otherwise, 2 1iscalled dead at w .
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The variable «» i1sliveat «w 1if x 1sliveat w« along some path
to the exit. Otherwise, « 1s called dead at .

Question:

How can the sets of all dead/live variables be computed for every u?
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The variable «» i1sliveat «w 1if x 1sliveat w« along some path
to the exit. Otherwise, « 1scalled dead at .

Question:

How can the sets of all dead/live variables be computed for every u?

Idea:

For every edge k = (u,_,v) , define a function [k]* which transforms
the set of variables that are live at © 1nto the set of variables that are
live at .

Note: Edge transformers go "backwards"!
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Let L =2",
For k= (_lab,_),define [k]* = [lab]* by:

[P L = L

[true(e)]* L = [false(e)]* L = LU Vars(e)
[r =] L = (L\{z}) U Vars(e)

[v = M[e[[FL = (L\{z}) U Vars(e)

[Mley] =ex;]P L = LU Vars(e;) U Vars(es)
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Let L =2",
For k= (_lab,_),define [k]* = [lab]* by:

Fr )

[true(e)]* L = [false(e)]* L = LU Vars(e)
[+ = e L = (L\{z}) U Vars(c)

[v = Mle}FL = (L\{z}) U Vars(e)

[Mle)] = e ]*L = LU Vars(e;) U Vars(es)

[k]¥ can again be composed to the effects of [7]* of paths
™ = ]Cl Ce ]fr by

[7]F = k]P0 ... o [k ]F

147



We verity that these definitions are meaningtul
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We verity that these definitions are meaningtul
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We verity that these definitions are meaningtul
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We verity that these definitions are meaningtul

{y} {z,y} 0

151



We verify that these definitions are meaningful
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We verify that these definitions are meaningful
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A variable 1s live at a program point  «  1f there 1s at least one path
from w« to program exit on which it is live.

The set of variables which are live at «  therefore is given by:

L u] = U{[[W]]ﬂ@ |7 u =" stop}

No variables are assumed to be live at program exit.

As partial order for [ weuse L = C. why?

So, the least upper bound is [ J. why?
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Transformation DE (Dead assignment Elimination):

& L]
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Correctness Proof:

—  Correctness of the effects of edges: If L 1is the set of variables
which are live at the exit of the path 7, then [n]*L is the set
of variables which are live at the beginning of 7.

—  Correctness of the transformation along a path: If the value of a
variable 1s accessed, this variable 1s necessarily live. The value of
dead variables thus is irrelevant.

—  Correctness of the transformation: In any execution of the
transformed programs, the live variables always receive the same
values as in the original program.
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Computation of the sets  L*[u] :

(1) Collecting constraints:

L[stop] 2 0
L|u) D [k]* (L[v]) k= (u,_,v) edge

(2) Solving the constraint system by means of RR iteration.
Since [ 1s finite, the iteration will terminate

(3) If the exit is (formally) reachable from every program
point, then the least solution £ of the constraint
system equals L* sinceall [k]* are distributive

157



Computation of the sets  L*[u] :

(1) Collecting constraints:

L[stop] 2 0
L|u) D [k]* (L[v]) k= (u,_,v) edge

(2) Solving the constraint system by means of RR iteration.

Since [ 1s finite, the iteration will terminate

(3) If the exit is (formally) reachable from every program
point, then the least solution £ of the constraint system equals
L* sinceall [k]* are distributive.

Note: The information is propagated backwards!
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(L[N} UL}
2\

s
(

D

(L
(L

L

=

|
|

)
LUy, R}

6
4
5

Uir}) U(L[3]U{r})
\wy) Uiz, )
\}) Uz}



= |

{y, R}
{z,y, R} | dito
{v,y, R}
{v,y, R}
{z,y, R}

{z, R}

{1. R}

S = W ke Ot DD O N
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The left-hand side of no assignment 1s dead

Caveat:

Removal of assignments to dead variables may kill further variables:

r=1y-+1;
z2 = 2%I;
M|R] = y;
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The left-hand side of no assignment 1s dead

Caveat:

Removal of assignments to dead variables may kill further variables:

r=1vy-+1;

z2 = 2%I;

M|R] = y;
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The left-hand side of no assignment 1s dead

Caveat:

Removal of assignments to dead variables may kill further variables:

r=1y-+1;
x,y, IR

z2 = 2%I;

M|R] = y;
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The left-hand side of no assignment 1s dead

Caveat:

Removal of assignments to dead variables may kill further variables:

y, R
r=y+1
z,y, R

z2 = 2%I;

& wh

M|R] = y;

(4) 0
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The left-hand side of no assignment 1s dead

Caveat:

Removal of assignments to dead variables may kill further variables:

y, R (i)

r=1y+1; r=1y+1;
r,y, R

(2

z2 = 2%I; ‘ ;

® R ©
MR

M|R] = y;

@) ©

| =v;
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The left-hand side of no assignment 1s dead

Caveat:

Removal of assignments to dead variables may kill further variables:

y, R G Y, R

r=1y+1; r=1y+1;

x,y, R e y, R
z2 = 2%I; ‘ ;

6 y, R 6 Y, R

M|R] = y; M|R] = y;

OR. @

166



The left-hand side of no assignment 1s dead

Caveat:

Removal of assignments to dead variables may kill further variables:

y, R 0 Y, R

r=y+ 1 r=y+ 1 ;

x,y, R e y, R
Z = 2%x; ‘ : ‘ ;

6 y7R 6 y’R 6

M|R] = y; M|R] = y; M|R] = y;

@) ¢ @ ¢ @
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Re-analyzing the program is inconvenient

Idea:  Analyze true liveness!

x 1s called truly live at « along a path 7, either

if 7 canbe decomposed into m = m k7 such that:

e £k 1satrueuseof ux;

e 7 doesnotcontain any definition of .
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k

O——O—"——=0~0—0

The set of truly used variables at an edge & = (_, lab,v) is defined as:

lab truly used

: 0

true (e) Vars (e)

false (e) Vars (e)

T = e; Vars (e) (%)
r = Mlel; Vars (e) (%)
Mleq] = es; Vars(e1) U Vars(es)

(¥) —giventhat = istrulyliveat wv
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Example:

r=1y+1;
Z = 2%
)

OO Oan©)
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Example:

r =1+ 1;
Z = 2%

M|R] = y;
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Example:

r =1+ 1;
Z = 2%

M|R] = y;
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Example:
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Example:
O
r =1+ 1;
Z = 2%

M|R] = y;
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The Effects of Edges:

[ L = L

[true(e)]* L = [false(e)]* L = LU Vars(e)
[r =] L = (L\{z})U Vars(e)
[v = Mle|;]FL = (L\{z})U Vars(e)
[Mle] = e ]FL = LU Vars(e;) U Vars(es)
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The Effects of Edges:

[]F L = L

[true(e)]* L = [false(e)]*L = LU Vars(e)
[+ =e]* L = (L\{z})U (x € L)? Vars(e): ()
[v = Mle|;]*L = (I\{z})U (z € L)? Vars(e): 0
[Mley| = e ]FL = LU Vars(ey) U Vars(es)
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Note:

e The effects of edges for truly live variables are more complicated
than for live variables

e Nonetheless, they are distributive !!
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Note:

e The effects of edges for truly live variables are more complicated
than for live variables

e Nonetheless, they are distributive !!

To see this, consider for D=2Y, fy=(uecy)?b: ) We
verify:

frUy) = (uey Uy)?b: 0
= (ueyVuecy)?b: 0
= (uey)?b: DU(uecy)?b:
= fyiU [y
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Note:

e The effects of edges for truly live variables are more complicated
than for live variables

e Nonetheless, they are distributive !!

To see this, consider for D=2Y, fy=(uecy)?b: ) We
verify:

fprUye) = (ue€yUy)?b: 0
= (ueyVuecy)?b: 0
= (u€y)?h: DU (u€Eys)?b: 0
= fyiU [y

—— the constraint system yields the MOP
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e True liveness detects more superfluous assignments than repeated
liveness !!!
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e True liveness detects more superfluous assignments than repeated
liveness !!!

Liveness:

() r=x—1;
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e True liveness detects more superfluous assignments than repeated
liveness !!!

True Liveness:

r=x—1;

=

=
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7 Interval Analysis

Constant propagation attempts to determine values of variables.
However, variables may take on several values during program execution.
So, the value of a variable will often be unknown.

Next attempt: determine an interval enclosing all possible values that a
variable may take on during program execution at a program point.
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Example:

for (i = 04 < 42;i++)
if (0<iAi<42){
A=A+
M|A;] = 3;
}
// A start address of an array

//  if-statement does array-bounds check

Obviously, the inner check is superfluous.
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Idea 1:

Determine for every variable & the tightest possible interval of
potential values.

Abstract domain:

Il ={[l,u] |le ZU{—0},u € ZU{+o0},l < u}

Partial order:

11, u1] C [lg, ug] iff lo <l ANy < ug

185



Thus:

[ll,ul] L [12, ’UQ] = [ll |_|l2,’U,1 |_|’LL2]

l o
:ﬁ
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Thus:

[ll, Ul] L [ZQ, ’UQ] = [ll [ ZQ, U1 L UQ]
[ll, ul] [ [ZQ, UQ] — [ll L lQ, Uq [ UQ] whenever (ll L] lg) S (Ul [ ’U,Q)

ll U1

:_
ZQ U2

—
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Caveat:

— [ 1s not a complete lattice,

— [ has infinite ascending chains, e.g.,

0,00z 0,1l [-1,1]C [-1,2] ...
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Caveat:

— [ 1s not a complete lattice,

— [ has infinite ascending chains, e.g.,

0,00z 0,1l [-1,1]C [-1,2] ...

Description Relation:

z Al ul iff [<z<u

Concretization:

ylhu={2z€Z|l<z<u}
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Example:

710,77 = {0,...,7}
v[0,00] = {0,1,2,...,}
Computing with intervals: Interval Arithmetic.
Addition:
[ll, Ul] —|—jj [lg, UQ] = [ll -+ ZQ, Uy + ’LLQ] where
— 0+ _ = —0
+o00+_ = +©

/| —oo+ oo cannot occur
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Negation:

Multiplication:
[, u1] #* [lo,us] = [a,b) where
a = lils M l{us Muyls Muqgus
= il U ljus U ugls L ugus
Example:
[0,2] #* [3,4] = [0,8]
[—1,2] #* [3,4] = [~4,8]
[—1,2] %* [-3,4] = [-6,8]
[—1,2] #* [-4,-3] = [-8,4
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Division: (1, uq] [*[lo, us] = |a, b]

e If O 1snotcontained in the interval of the denominator, then:

a = ll/lgﬂll/U2|—|ul/l2|—|U1/UQ
= ll/ZQUll/U2|_|Ul/l2|_|U1/’LL2

o If: [, <0< uy, wedefine:

la,b] = |—00,+00]
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Equality:

( true if i =u; =1l = us

[, ur) =="[la,ug] = { false if w <lpyVuy <l

\ T otherwise
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Equality:

( true if i =u; =1l = us
[, ur) =="[la,ug] = { false if w <lpyVuy <l
LT otherwise
Example:
42, 42]==F[42,42] = true
0,7==*[0,77 = T

[1,2]==F[3,4 = false
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Less:

true 1if wup <l

1, ] <! o, us] = < false if wuy <y

T otherwise
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Less:

true 1if wup <l
11, uq] <! o, us] = < false if wuy <y
\ T otherwise

Example:
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By means of [ we construct the complete lattice:

Dy = (Vars — 1)

Description Relation:

p A D ifft D#L AN VaeeVars: (pz) A (D x)

The abstract evaluation of expressions is defined analogously to constant
propagation. We have:

(Te] p) A ([e]* D) whenever p A D
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The Effects of Edges:

__,]]ﬁ D = D
[r =e]* D = D@ {rw [e]! D}
[v = Mle|;]*D = D&{rw— T}
“M[Gl] = 62;]]11 D =D
(L if definitely false
true (e)]* D = 9 ’
| D otherwise possibly true
(D if ossibly false
[false (e)]* D = 9 g ’
| L otherwise definitely true

... given that D # 1
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Better Exploitation of Conditions:

L if false=[e]* D

1), otherwise

[Pos(e)]* D = {

where :

(D@ {o— (Do) ([e]f D)}
D = § D®{r— (Dx)M|—oc0,ul}
D@ {r— (D) N[l o0l}

199

fe=r==¢
ife=u < ey,fel]f D=1
ife=ux > e, [e]*D=[,_]



Better Exploitation of Conditions (cont.):

1 if  false Z [¢]* D
1), otherwise

[Neg () D = {

where :

(Da{r— (Do) ([e]fD)} ife=a # e
Dy = ¢ Do {r— (Dx)N[-o0,ul} ife=a > e, [e]*
D& {r— (D) N[l o0l} ife=a < ey, [er]f

- ul
]

D
D
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Example:
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42
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Problem:

—  The solution can be computed with RR-iteration —
after about 42 rounds.

—  On some programs, iteration may never terminate.

Idea: Widening

Accelerate the iteration — at the cost of precision
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Formalization of the Approach:

Let xigfi(xl,...,xn), 7::]_,...,71
denote a system of constraints over D
Define an accumulating iteration:

xi:$iufi($1,...,ﬂfn), ’1;21,...,71
We obviously have:

(a) x 1sasolution of (1) iff x 1s a solution of (2).

(b)  The function G : D" — D" with

Gy, xn) = W1,y Yn), Y =x; U fi (2, ...

is increasing, i.e., xtC Gz forall zeD".
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(c)

(d)

The sequence G* L, k>0, isan ascending chain:

lCGLC...CGFLLC ...

If GFL=GF!L

=y, then v 1s a solution of (1).

If D has infinite strictly ascending chains, then (d) 1s not yet
sufficient ...

but: we could consider the modified system of equations:
v, =x; U fi(ry,...,x,), 1=1,....n (3)
for a binary operation widening:
L :D*—>D with v1 Uvy E vy Uuog

(RR)-1teration for (3) still will compute a solution of (1)
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... Tor Interval Analysis:

e  The complete lattice is: Dy = (Vars — 1),

e the widening U 1is defined by:

luD = DUl =D and for Dq # 1 # Ds:

(Dl L DQ) €r = (D1 I) L (D2 ZE) where
[ll, Ul] L [lg, Ug] = [l, U] with
(1 it 1, <l
l _ < 1 1 = 62
—o0 otherwise

Uq if U1 Z U9

|+ otherwise

—— Ll 1s not commutative !!!
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Example:

0,20(1,2) = [0,
172|=1072 — :_0072]
1,5]0[3,7] = [1,+0

—  Widening returns larger values more quickly.

d

It should be constructed in such a way that termination of iteration
1s guaranteed.

—  For interval analysis, widening bounds the number of iterations by:

Hpoints - (1 4+ 2 - # Vars)
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Conclusion:

e In order to determine a solution of (1) over a complete lattice
with infinite ascending chains, we define a suitable widening and
then solve (3)

e (Caveat: The construction of suitable widenings is a dark art !!!

Often U 1s chosen dynamically during iteration such that

—  the abstract values do not get too complicated;

—  the number of updates remains bounded ...
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Our Example:
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[ U
0 || —oo | 400
1 0 0
2 0 0
3 0 0
4 0 0
5 0 0
6 1 1
7
8




Our Example:
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... obviously, the result is disappointing.

Idea 2:

In fact, acceleration with L need only be applied at sufficiently many
places!

A set [ 1saloop separator, if every loop contains at least one point
from [

If we apply widening only at program points from such a set [ , then
RR-iteration still terminates !!!
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In our Example:

Neg(i < 42) Pos(i < 42)

Pos(0 < i < 42)

A1:A+i;

M[Al] = ’i;

211
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The Analysis with [ = {1} :
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42

+00

+00
41
41
41
41
42
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The Analysis with [ = {2} :

1 4
[ u [ u [ u
0| —oo | 400 || =00 | +00 || —00 | +00
1 0 0 0 1 0 42
2 0 0 0 | +oo 0 | +oo
3 0 0 0 41 0 41
4 0 0 0 41 0 41 | dito
5} 0 0 0 41 0 41
6 1 1 1 42 1 42
7 1 42 | +oo || 42 | +o0
8 1 42 42

213




Discussion:

e Both runs of the analysis determine interesting information,

e Therunwith [ = {2} provesthatalways =42 after
leaving the loop.

e Onlythe runwith [ = {1} finds, however, that the outer check
makes the inner check superfluous.

How can we find a suitable loop separator 7 7?7
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Idea 3: Narrowing

Let z denote any solution of (1), i.e.,
lefz@a i::la'":n

Then for monotonic  f;

// Narrowing Iteration
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Idea 3: Narrowing

Let z denote any solution of (1), i.e.,
x’LQfZia 7;:1,...,72

Then for monotonic  f; ,

// Narrowing Iteration

Every tuple F*z isasolutionof (1)
—

Termination is no problem anymore:
we stop whenever we want

// The same also holds for RR-iteration.
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Narrowing Iteration in the Example:
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Narrowing Iteration in the Example:
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Narrowing Iteration in the Example:
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Discussion:

We start with a safe approximation.
We find that the inner check is redundant :-)

We find that at exit from the loop, always ¢ = 42

L]

It was not necessary to construct an optimal loop separator

Last Question:
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