Bottom-Up Syntax Analysis

Reinhard Wilhelm, Sebastian Hack, Mooly Sagiv
Saarland University, Tel Aviv University

W2015

Saarland University, Computer Science

Subjects

m Functionality and Method
m Example Parsers

m Derivation of a Parser

m Conflicts

m LR(k)-Grammars

m LR(1)-Parser Generation

m Bison

Bottom-Up Syntax Analysis

Input: A stream of symbols (tokens)
Output: A syntax tree or error

Method: until input consumed or error do

m shift next symbol or reduce by some production
m decide what to do by looking k symbols ahead

Properties: m Constructs the syntax tree in a bottom-up manner
Finds the rightmost derivation (in reversed order)
Reports error as soon as the already read part of the
input is not a prefix of a program (valid prefix property)

Parsing aabb in the grammar G,, with S — aSble

Stack | Input | Action Dead ends

$ aabb# | shift reduce S — ¢

$a abb# | shift reduce S — ¢

$aa bb# reduce S — ¢ shift

$aaS | bb# shift reduce S — ¢
$aaSb | b# reduce S — aSh | shift,reduce S — ¢
$asS b# shift reduce S — ¢
$aSb | # reduce S — aSh | reduce S — ¢

$S # accept reduce S — ¢

Issues:

m Shift vs. Reduce

m Reduce A — 8, Reduce B — af3

Parsing aa in the grammar S — AB,S - A/A— a, B — a

Stack | Input | Action Dead ends

$ aa# | shift

$a a# reduce A — a | reduce B — a, shift
$A a# shift reduce S — A

$Aa | # reduce B— a |reduce A — a

$AB | # reduce S — AB

$S # accept

Issues:

m Shift vs. Reduce

® Reduce A — 3, Reduce B — af

Shift-Reduce Parsers

m The bottom—up Parser is a shift-reduce parser, each step is a

shift: consuming the next input symbol or
reduction: reducing a suffix of the stack contents by some
production.

m problem is to decide when to stop shifting and make a reduction

B a next right side to reduce is called a handle if

reducing too early leads to a dead end,
reducing too late buries the handle

LR-Parsers — Deterministic Shift—Reduce Parsers

Parser decides whether to shift or to reduce based on

m the contents of the stack and

m k symbols lookahead into the rest of the input

Property of the LR—Parser: it suffices to consider the topmost state on the
stack instead of the whole stack contents.

From Pg to LR—Parsers for G

B P¢ has non-deterministic choice of expansions,
m LL—parsers eliminate non—determinism by looking ahead at expansions,

m LR—parsers pursue all possibilities in parallel
(corresponds to the subset—construction in NFSM — DFSM).

Derivation:

1. Characteristic finte-state machine of G, a description of P¢
2. Make deterministic
3. Interpret as control of a push down automaton

4. Check for “inedaquate” states

Characteristic Finite-State Machine of G

...is a NFSM Ch(G) = (Qc, VcaAQ dc;, FC):

B states are the items of G
Qc = /tG

m input alphabet are terminals and non-terminals
Vo= V5ru Vy

B start state g. = [S' — .5]

m final states are the complete items
Fe={[X—=a]| X—aecP}
m Transitions:

Ac = {(IX = a.YBLY,[X = aY.B) | X > aYBePand Y e VyUVr}
UA{(X = a.Y8,e,[Y = A | X > aYBePand Y - y€ P}

ltem PDA and Characteristic NFA
for Gap: S — aSb|e and ch(Ga,p)

Stack Input | New Stack
[S"— .9] € [S" — .S][S — .aSh]
[— .5] € [S"— .S|[S —]
[S — .aSh] a [S — a.5b]
[S — a.5bh] € [S — a.Sb][S — .aSh]
[S — a.5bh] € [S — a.Sb][S —]
[S — aS.b] b [S — aSb.]
[S — a.5b][S —] € [S — aS.b]
[S — a.Sb]|[S — aSb.] | € [S — aS.b]
[— .S][S — aSb] | e [S"— 5]
[S"— .S][S —] € [S"— 5]
S
S =.5] —= [—58]
f a S b
€[[S—.aSh] —=[S—aSh] —=1S = aSh] —= [S — aSh||

€

S — |

Characteristic NFSM for Gy

[

[

S—E, E-E+T|T, T—TxF|F, F—(E)|id
E
[S—.E] = [SoE]
¢ e
E £ T
[E—» E+T] = [E—E+T] [E-E+.T] = [E—=E+T]
1
) 1)
-
[E—.T] = [E=T]
2195
T * F
[T—.TxF] = [ToT.xF] = [T—TxF = [T—TxF]
1
e |l€
o
[7T—. = [T—F]
W K
[F—> ¥ [F— (.E)] = [F—(E)] ; [F—(E)]
id
[F — .id] = [F—id]

IV

IV

=

11

Interpreting ch(G)

State of ch(G) is the current state of Pg, i.e. the state on top of Pg's
stack. Adding actions to the transitions and states of ch(G) to describe Pg:

e—transitions: push new state of ch(G) onto stack of Pg: new current
state.

reading transitions: shifting transitions of Pg: replace current state of Pg
by the shifted one.

final state: Correspond to the following actions in Pg:

m pop final state [X — «.] from the stack,
m do a transition from the new topmost state under X,
m push the new state onto the stack.

12

Handles and Reliable Prefixes

Some Abbreviations:
RMD: rightmost derivation
RSF: right sentential form

Consider a RMD of cfg G:

s’ :m> BXu = Bau

B « is a handle of Bau.
The part of a RSF next to be reduced.

m Each prefix of Sa is a reliable prefix.

A prefix of a RSF stretching at most up to the end of the handle,
i.e. reductions if possible then only at the end.

13

Examples in Gy

RSF (handle)

reliable prefix

Reason

E+F
T xid
F xid
T xid +id

E, E+, E+F
T, Tx, Txid
F

T, T, Txid

S T«F— Txid
rm rm
5% Txid = F xid

S TsF— Txid

14

Valid [tems

[X — a.f] is valid for the reliable prefix e, if there exists a RMD

s’ r:;> yXw — yafw

An item valid for a reliable prefix gives one interpretation of the parsing
situation.

Some reliable prefixes of Gy

Reliable

Prefix Valid Items Reason ¥ w | X |« Jo]

E+ [E— E+.T] S?E?Eﬁ—T € € E | E+ | T

[T — .F] Sr:’;>E+Tﬁ>E+F E+ € T | € F

[F — .id] Sr::?E‘FFﬁ}E‘Fid E+ € F | e id

E+(| F=(B] | S= (E+F) E+) | F|C | B
— (E+(E)

15

Valid Items and Parsing Situations

Given some input string xuvw.
The RMD §' == 7 Xw = yafw = yaww = Yuvw = XUuvw
rm rm rm rm rm
describes the following sequence of partial derivations:
v = x a = u B = v X = af S = yXw
rm rm rm rm rm
executed by the bottom-up parser in this order.

The valid item [X — « . 3] for the reliable prefix ya describes the situation
after partial derivation 2,
that is, for RSF yavw

16

Theorems
Ch(G) = (067 VCuAcv qC7 FC)

Theorem
For each reliable prefix there is at least one valid item.
Every parsing situation is described by at least one valid item.

Theorem
Let vy € (VrUVy)* and g € Q..
(gc,) I—:h(G) (g,e) iffv is a reliable prefix and q is a valid item for ~.

A reliable prefix brings ch(G) from its initial state to all its valid items.

Theorem

The language of reliable prefixes of a cfg is regular.

17

Making ch(G) deterministic

Apply NFSM — DFSM to ch(G): Result LRy(G).
Example: ch(G,p)

[S"—=.5] —= [=S|
€

a S b
€ [S— .aSh] —=[S = aSh] —=[S —=aSh] —= [S — aSh|

—

S =]

LRo(Gab)Z

18

Characteristic NFSM for Gy

[

[

S—E, E-E+T|T, T—TxF|F, F—(E)|id
E
[S—.E] = [SoE]
¢ e
E £ T
[E—» E+T] = [E—E+T] [E-E+.T] = [E—=E+T]
1
) 1)
-
[E—.T] = [E=T]
2195
T * F
[T—.TxF] = [ToT.xF] = [T—TxF = [T—TxF]
1
e |l€
o
[7T—. = [T—F]
W K
[F—> ¥ [F— (.E)] = [F—(E)] ; [F—(E)]
id
[F — .id] = [F—id]

IV

IV

=

19

LRy(Go)

The States of LRy(Gp) as Sets of Items

So ={ [S—.E], Ss ={ [F—id]}
[E— .E+T],
[E — .T], Se ={ [E—E+.T],
[T — .T % F], [T = .TxF],
[T — .F], [T — .F),
[F — .(E)], [F — .(E)],
[F — .id]} [F — .id]}
S5 ={ [S—E] S; ={ [T — Tx.F,
[E—E.+TJ} [F — .(E)],
[F — .id]}
S ={ [E=TI], Ss ={ [F—(E)],
[T — T.xF]} [E— E.+T]}
53 ={ [T—=F]} So ={ [E—E+T],
[T — T.xFJ}
Sa ={ [F—=(E)] Sio ={ [T—TxF]}
[E - .E+ T,
[E —.T], Su ={ [F—=(E)]}
[T = .TxF]
[T — .F]

[F—.(E)]
[F — .id]}

Theorems

Ch(G) = (QC, VC,AC, qc, Fc) and LR()(G) = (Qd, Vv U VT,A, qd, Fd)

Theorem

Let y be a reliable prefix and p(v) € Qq be the uniquely determined state, into
which LRy (G) transfers out of the initial state by reading ~, i.e.,

(9d:7) Froe) (P(7);). Then

a

b

p(e) = qq
p(fY) = {q € Qc ‘ (qC”Y) l_:h(G) (q’ E)}

(a)
(b)
(c) p(y) ={ie€ It | i valid for ~}
(d)

d) Let T the (in general infinite) set of all reliable prefixes of G.

The mapping p: T — Qg defines a finite partition on T.
(e) L(LRo(G)) is the set of reliable prefixes of G that end in a handle.

22

Go

v = E + F is a reliable prefix of Gp.

With the state p(y) = Ss are also associated:

F, (F, ((F, (((F,...

Tx(F, Tx((F, T=(((F,...

E+F, E+(F, E+((F,...

Regard 56 in LR()(G())

It consists of all valid items for the reliable prefix E+,

i.e., the items [E — E+.T|,[T — .T« F),[T — .F],[F — .id],[F — .(E)].
Reason:

E+ is prefix of the RSF E+ T ;
SﬁEﬁ E+T ﬁE—FFﬁE—Fid

1 1 1 are valid.
Therefore [E—E+.T] [T —.F] [F —.id]

23

What the LRy(G) describes

LRy(G) interpreted as a PDA Py(G) = (I', V1, A, qo, {gr})
m [(stack alphabet): the set Qg of states of LRy(G).
B go = qq (initial state): in the stack of Py(G) initially.
m gr = {[S' — S.]} the final state of LRy(G),

B ACT* x (VruU{e}) x " (transition relation):
Defined as follows:

24

LRy(G)'s Transition Relation

shift: (qa a, q(sd(q7 3)) €A, if 5d(q> a) defined.
Read next input symbol a and push successor state of g
under a (item [X — ---.a---] € q).

reduce: (qqi1...qn,¢,q04(q,X)) € A,
if [X = a.]€qn, |af=n.
Remove |«| entries from the stack.
Push the successor of the new topmost state under X onto
the stack.

Note the difference in the stacking behavior:

m the ltem PDA P¢ keeps on the stack only one item for each
production under analysis,

m the PDA described by the LRy(G) keeps |« states on the stack for a
production X — «f3 represented with item [X — a.f]

25

Reduction in PDA Py(G)

26

Some observations and recollections

m also works for reductions of «,

m each state has a unique entry symbol,

m the stack contents uniquely determine a reliable prefix,

B current state (topmost) is the state associated with this reliable prefix,

B current state consists of all items valid for this reliable prefix.

27

Non-determinism in Py(G)

Po(G) is non-deterministic if either

Shift—reduce conflict: There are shift as well as reduce transitions out of
one state, or

Reduce-reduce conflict: There are more than one reduce transitions from
one state.

States with a shift-reduce conflict have at least one read item
[X — «.ap] and at least one complete item [Y — ~.].

States with a reduce—reduce conflict have at least two complete items
[Y =], [Z = 5]

A state with a conflict is inadequate.

28

Some Inadequate States

)+ T c
((s) Ss fsg)

& . N
XSF

=

®) : @)

LRy(Go) has three inadequate states, S;, S, and So.

S1: Can reduce E to S (complete item [S — E\])
or read "+" (shift-item [E — E. + T));

Sy Can reduce T to E (complete item [E — T.])
or read "x" (shift-item [T — T.x F]);

So: Can reduce E + T to E (complete item [E — E + T.])
or read "« (shift-item [T — T.x F]).

29

Adding Lookahead

m LR(k) item [X — ai.a0, L]
if X = ajap € Pand L C VFg

m LR(0) item [X — aj.ap] is called core of [X — aj.an, L]

m lookahead set L of [X — aj.ap, L]

B [X — aj.ap, L] is valid for a reliable prefix ac; if
S'# = aXw = aciaow

rm rm
and
L={u|S'# = aXw = acjaow and u=k:w}

rm rm

The context—free items can be regarded as LR(0)-items if
[X — a1.a2,{e}] is identified with [X — aj.a2].

30

Example from Gy

1. [E— E+.T,{),+,#}] is a valid LR(1)-item for (E+

2. [E — T.,{x}] is not a valid LR(1)-item for any reliable prefix

Reasons:

*

1. §' = (E) = (E+T) == (E+ T +id) where

rm

a=(G ag=E+, ap=T, u=+4, w=+id)

2. The string Ex can occur in no RMD.

31

LR—Parser

Take their decisions (to shift or to reduce) by consulting

m the reliable prefix v in the stack, actually the by v uniquely determined

state (on top of the stack),
B the next k symbols of the remaining input.
m Recorded in an action—table.

m The entries in this table are:

shift: read next input symbol;
reduce (X — «): reduce by production X — «;
error: report error

accept: report successful termination.

A goto-table records the transition function of characteristic automaton

The action— and the goto—table

action-table goto-table

va#ﬁ Vy U Vr

u X
parser—action Qg 54(q, X)

for (g, u)

Parser Table for S — aSb|e

Action—table Goto—table
state sets of items symbols
b #
[— .5], state symbol
0 [S — .aSh], r(S —e) a|lb|#|S
[s—=1} 0 1 4
[S — a.5b), 1|1 2
1 [S — .aSh], r(S —€) 2 3
[S—= 1} 3
2 | {[S — aS.b]} s 4
3 | {[S — aShb.]} r(S — aSb) | r(S — aSh)
4 | {[S" > S} accept

Parsing aabb

Stack Input | Action

$0 aabb# | shift 1

$01 abb# | shift 1

$011 bb# reduce S — ¢
$0112 bb# shift 3
$01123 | b# reduce S — aSb
$012 | b# |shift3

$0123 |# reduce S — aSb
$04 # accept

35

Algorithm LR(1)-PARSER

type state = set of item;
var lookahead: symbol;
(* the next not yet consumed input symbol)
S : stack of state;
proc scan;
(* reads the next symbol into lookahead)
proc acc;
(* report successful parse; halt)
proc err(message: string);
(* report error; halt x)

36

scan; push(S, qq);
forever do
case action[top(S), lookahead] of
shift: begin push(S, goto[top(S), lookahead]);
scan
end ;
reduce (X—a) : begin
pop!®(S); push(S, goto[top(S), X]);
output(" X — o)

end ;
accept: acc;
error: err("...");
end case

od

37

LR(1)-Conflicts

Set of LR(1)-items / has a

shift-reduce-conflict:
if exists at least one item [X — «.af, 1] € /
and at least one item [Y — v., Lo] € /,
and if a € L.

reduce-reduce-conflict:
if it contains at least two items [X — ., L]
and [Y — B., L2] where L1 N Ly # (.

A state with a conflict is called inadequate.

38

Example from Gy

Sy=Closure(Start) S¢= Closure(Succ(Sy,+))
={[5 = -E.{#]}] ={[E = E+ T, {# +}],
[E— .E+ T,{# +}] [T = .TxF {#+,x}],
[E— .T,{# +}], [T — .F {#, +,+}],
[T = . T=F {# +, %}, [F — (E),{#, +,*}],
[T — .F {# +,}], [F — .id, {#,+,}] }

[F = (E), {#, +, =},
[F — .id,{#,+,*}] } Sy=Closure(Succ(S§, T))
={[E = E+ T {# +}],
Si= Closure(Succ(S§, E)) [T = T.xF, {#,+,%}] }
={[S = E.. {#}],
[E— E+T,{#+} }

Si=Closure(Succ(S§, T))

={[E = T {# +}],
[T = T« F{# +.+}] }

Inadequate LR(0)—states S1,S> und Sy are adequate after adding lookahead sets.
5{ shifts under "+", reduces under "#".
Sé shifts under "x", reduces under "#" and "+,

Sg shifts under "«", reduces under "#" and "+".

39

Operator Precedence Parsing

Gp encodes operator precedence and associativity and used lookahead in an
LR(1) parser to disambiguate.

Idea: Use ambiguous grammar G{:
E—-E+E|ExE|id]|(E)

and operator precedence and associativity to disambiguate directly.

40

Deterministic ch(Gy)

...contains two states:

S, E - E+E. Ss: E — ExE.
E - E+E E - E.+E
E —»- E.xE E —- E.xE

with shift reduce conflicts.

In both states, the parser can reduce or shift either + or *.

41

ch(Gg) conflicts in detail

m Consider the input id + id * id

and let the top of the stack be S7.

- If reduce, then + has higher precendence than x*
- If shift, then + has lower precendence than %

m Consider the input id + id + id

and let the top of the stack be S7.

— If reduce, + is left-associative
- If shift, + is right-associative

42

Simple Implementation for Expression Parser

m Model precedence/assoc with left and right precedence

m Shift/reduce mechanism can be implemented with loop and recursion:

Expression parseExpression(Precedence precedence) {
Expression expr = parsePrimary();
for (535) {
Token t = currToken;
TokenKind kind = t.getKind();

// if operator in lookahead has less left precedence: reduce
if (kind.getLPrec() < precedence)
return expr;

// else shift
nextToken() ;

// and parse other operand with right precedence
Expression right = parseExpression(kind.getRPrec());
expr = factory.createBinaryExpression(t, expr, right);

43

