
Lexical Analysis

Reinhard Wilhelm, Sebastian Hack, Mooly Sagiv
Saarland University, Tel Aviv University

W2015

Saarland University, Computer Science

1

Subjects

� Role of lexical analysis

� Regular languages, regular expressions

� Finite-state machines

� From regular expressions to finite-state machines

� A language for specifying lexical analysis

� The generation of a scanner

� Flex

2

Lexical Analysis (Scanning)

� Functionality

Input: program as sequence of characters
Output: program as sequence of symbols (tokens)

� Report errors, symbols illegal in the programming language

� Additional bookkeeping:

– Identify language keywords and standard identifiers
– Eliminate “whitespace”, e.g., consecutive blanks and newlines
– Track text coordinates for error report generation
– Construct table of all symbols occurring (symbol table)

3

Automatic Generation of Lexical Analyzers

� The symbols of programming languages can be specified by regular
expressions.

� Examples:

– program as a sequence of characters.
– (alpha (alpha | digit)*) for identifiers
– “/*“ until “*/“ for comments

� The recognition of input strings can be performed
by a finite-state machine.

� A table representation or a program for the automaton is automatically
generated from a regular expression.

4

Automatic Generation of Lexical Analyzers cont’d

regular-expression(s)

❄

FLEX

❄

scanner-programinput-program ✲ tokenized-program✲

5

Notations

A language L is a set of words x over an alphabet Σ.

a1a2 . . . an, a word over Σ, ai ∈ Σ
ε The empty word
Σn The words of length n over Σ
Σ∗ The set of finite words over Σ
Σ+ The set of non-empty finite words over Σ
x .y The concatenation of x and y

Language Operations

L1 ∪ L2 Union
L1L2 = {x .y |x ∈ L1, y ∈ L2} Concatenation

L = Σ∗ − L Complement
Ln = {x1 . . . xn|xi ∈ L, 1 ≤ i ≤ n}

L∗ =
⋃

n ≥ 0
Ln Closure

L+ =
⋃

n ≥ 1
Ln

6

Regular Languages

Defined inductively

� ∅ is a regular language over Σ

� {ε} is a regular language over Σ

� For all a ∈ Σ, {a} is a regular language over Σ

� If R1 and R2 are regular languages over Σ, then so are:

– R1 ∪ R2,
– R1R2, and
– R∗

1

7

Regular Expressions and the Denoted Regular Languages

Defined inductively

� ∅ is a regular expression over Σ denoting ∅,

� ε is a regular expression over Σ denoting {ε},

� For all a ∈ Σ, a is a regular expression over Σ denoting {a},

� If r1 and r2 are regular expressions over Σ denoting R1 and R2, resp., then so
are:

– (r1|r2), which denotes R1 ∪ R2,
– (r1r2), which denotes R1R2, and

– (r1)
∗

, which denotes R∗

1
.

� Metacharacters, ∅, ε, (,), |, ∗ don’t really exist,
are replaced by their non-underlined versions.
Clash between characters in Σ and metacharacters {(,), |, ∗}

8

Example

Expression Language Example words
a|b {a, b} a, b

ab∗a {a}{b}∗{a} aa, aba, abba, abbba, . . .

(ab)∗ {ab}∗ ε, ab, abab, . . .

abba {abba} abba

9

Automata

� process input

� make transitions from configurations to configurations;

� configurations consist of (the rest of) the input and some memory;

� the memory may be small, just one variable with finitely many values,

� but the memory may also be able to grow without bound, adding and
removing values at one of its ends;

� the type of memory determines its ability to recognize a class of
languages,

10

Finite State Machine

The simplest type of
automaton,
its memory consists
of only one variable,
which can store one
out of finitely many va-
lues, its states,

Input Tape

Actual State

Control

11

A Non-Deterministic Finite-State Machine (NFSM)

M = 〈Σ,Q,∆, q0,F 〉 where:

� Σ — finite alphabet

� Q — finite set of states

� q0 ∈ Q — initial state

� F ⊆ Q — final states

� ∆ ⊆ Q × (Σ ∪ {ε})× Q — transition relation

May be represented as a transition diagram

� Nodes — States

� q0 has a special “entry” mark

� final states doubly encircled

� An edge from p into q labeled by a if (p, a, q) ∈ ∆

12

Example: Integer and Real Constants

Di ∈ {0, 1, . . . , 9} . E ε

0 {1,2} ∅ ∅ ∅
1 {1} ∅ ∅ ∅
2 {2} {3} ∅ ∅
3 {4} ∅ ∅ ∅
4 {4} ∅ {5} {7}
5 {6} ∅ ∅ ∅
6 {7} ∅ ∅ ∅
7 ∅ ∅ ∅ ∅

q0 = 0

F = {1, 7}

0

Di

Di

Di

2

1

Di

Di
3 4

E

5

Di

Di

.

6

7

Di

ε

13

Finite-state machines — Scanners

Finite-state machines

� get an input word,

� start in their initial state,

� make a series of transitions
under the characters
constituting the input
word,

� accept (or reject).

Scanners

� get an input string
(a sequence of words),

� start in their initial state,

� attempt to find the end of the
next word,

� when found, restart in their
initial state with the rest of
the input,

� terminate when the end of the
input is reached or an error is
encountered.

14

Maximal Munch strategy

Find longest prefix of remaining input that is a legal symbol.

� first input character of the scanner — first “non-consumed” character,

� in final state, and exists transition under the next character: make
transition and remember position,

� in final state, and exists no transition under the next character:
Symbol found,

� actual state not final and no transition under the next character:
backtrack to last passed final state

– There is none: Illegal string
– Otherwise: Actual symbol ended there.

Warning: Certain overlapping symbol definitions will result in quadratic
runtime: Example: (a|a∗;)

15

Other Example Automata

� integer-constant

� real-constant

� identifier

� string

� comments

16

The Language Accepted by a Finite-State Machine

� M = 〈Σ,Q,∆, q0,F 〉

� For q ∈ Q, w ∈ Σ∗, (q,w) is a configuration

� The binary relation step on configurations is defined by:

(q, aw) ⊢M (p,w)

if (q, a, p) ∈ ∆

� The reflexive transitive closure of ⊢M is denoted by ⊢∗
M

� The language accepted by M

L(M) = {w | w ∈ Σ∗ | ∃qf ∈ F : (q0,w) ⊢∗
M (qf , ε)}

17

From Regular Expressions to Finite Automata

Theorem

(i) For every regular language R , there exists an NFSM M, such that
L(M) = R .
(ii) For every regular expression r , there exists an NFSM that accepts the
regular language defined by r .

18

A Constructive Proof for (ii) (Algorithm)

� A regular language is defined by a regular expression r

� Construct an “NFSM” with one final state, qf , and the transition
r

q0
qf

� Decompose r and develop the NFSM according to the following rules

q

pqpq

pq1qpq

q pp

r2r1

r2

r1

ε

ε

εε

r

r1r2

r∗
q1 q2

r1|r2

until only transitions under single characters and ε remain.

19

Examples

� a(a|0)∗ over Σ = {a, 0}

� Identifier

� String

20

Nondeterminism

� Several transitions may be possible under the same character in a
given state

� ε-moves (next character is not read) may “compete” with non-ε-moves.

� Deterministic simulation requires “backtracking”

21

Deterministic Finite-State Machine (DFSM)

� No ε-transitions

� At most one transition from every state under a given character, i.e.
for every q ∈ Q, a ∈ Σ,

|{q′ | (q, a, q′) ∈ ∆}| ≤ 1

22

From Non-Deterministic to Deterministic Automata

Theorem

For every NFSM, M = 〈Σ,Q,∆, q0,F 〉 there exists a DFSM,
M ′ = 〈Σ,Q ′, δ, q′

0
,F ′〉 such that L(M) = L(M ′).

A Scheme of a Constructive Proof (Subset Construction)
Construct a DFSM whose states are sets of states of the NFSM.
The DFSM simulates all possible transition paths under an input word in
parallel.
Set of new states {{q1, . . . , qn} | n ≥ 1 ∧ ∃w ∈ Σ∗ : (q0,w) ⊢∗

M (qi , ε)}

q0

q1

qn

w

w

...

23

The Construction Algorithm

Used in the construction: the set of ε-Successors,
ε-SS(q) = {p | (q, ε) ⊢∗

M (p, ε)}

� Starts with q′
0
= ε-SS(q0) as the initial DFSM state.

� Iteratively creates more states and more transitions.

� For each DFSM state S ⊆ Q already constructed and character a ∈ Σ,

δ(S , a) =
⋃

q∈S

⋃

(q,a,p)∈∆

ε-SS(p)

if non-empty
add new state δ(S , a) if not previously constructed;
add transition from S to δ(S , a).

� A DFSM state S is accepting (in F ′) if there exists q ∈ S such that
q ∈ F

24

Example: a(a|0)∗

0

εεa a

ε

q0 q1 q2 q3 qf

25

DFSM minimization

DFSM need not have minimal size, i.e. minimal number of states and
transitions.
q and p are undistinguishable (have the same acceptance behavior) iff

for all words w (q,w) ⊢∗
M and (p,w) ⊢∗

M lead into
either F ′ or Q ′ − F ′.

Q−F’

F’either

for all w

w

p

q

or

w

Undistinguishability is an equivalence relation.
Goal: merge undistinguishable states ≡ consider equivalence classes as new
states.

26

DFSM minimization algorithm

� Input a DFSM M = 〈Σ,Q, δ, q0,F 〉

� Iteratively refine a partition of the set of states, where each set in the
partition consists of states so far undistinguishable.

� Start with the partition Π = {F ,Q − F}

� Refine the current Π by splitting sets S ∈ Π if there exist q1, q2 ∈ S
and a ∈ Σ such that

– δ(q1, a) ∈ S1 and δ(q2, a) ∈ S2 and S1 6= S2

� Merge sets of undistinguishable states into a single state.

27

Example: a(a|0)∗

{q1, q2, qf }

a

0

{q3, q2, qf }

a

0

a{q0}

28

A Language for specifying lexical analyzers

(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)∗

(ε|.(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)∗

(ε|E (0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)))

29

Descriptional Comfort

Character Classes:
Identical meaning for the DFSM (exceptions!), e.g.,
le = a - z A - Z
di = 0 - 9
Efficient implementation: Addressing the transitions indirectly
through an array indexed by the character codes.

Symbol Classes:
Identical meaning for the parser, e.g.,
Identifiers
Comparison operators
Strings

30

Descriptional Comfort cont’d

Sequences of regular definitions:

A1 = R1

A2 = R2

· · ·
An = Rn

31

Sequences of Regular Definitions

Goal: Separate final states for each definition

1. Substitute right sides for left sides

2. Create an NFSM for every regular expression separately;

3. Merge all the NFSMs using ε transitions from the start state;

4. Construct a DFSM;

5. Minimize starting with partition

{F1,F2, . . . ,Fn,Q −
n⋃

i=1

Fi}

32

Flex Specification

Definitions
%%
Rules
%%
C-Routines

33

Flex Example

%{

extern int line_number;

extern float atof(char *);

%}

DIG [0-9]

LET [a-zA-Z]

%%

[=#<>+-*] { return(*yytext); }

({DIG}+) { yylval.intc = atoi(yytext); return(301); }

({DIG}*\.{DIG}+(E(\+|\-)?{DIG}+)?)

{yylval.realc = atof(yytext); return(302); }

\"(\\.|[^\"\\])*\" { strcpy(yylval.strc, yytext);

return(303); }

"<=" { return(304); }

:= { return(305); }

\.\. { return(306); }

34

Flex Example cont’d

ARRAY { return(307); }

BOOLEAN { return(308); }

DECLARE { return(309); }

{LET}({LET}|{DIG})* { yylval.symb = look_up(yytext);

return(310); }

[\t]+ { /* White space */ }

\n { line_number++; }

. { fprintf(stderr,

"WARNING: Symbol ’%c’ is illegal, ignored!\n", *yytext);}

%%

35

