
Syntactic Analysis

Reinhard Wilhelm, Sebastian Hack, Mooly Sagiv
Saarland University, Tel Aviv University

27. Oktober 2015

Saarland University, Computer Science

1

Syntactic Analysis: Topics

� Introduction

– The task of syntax analysis
– Automatic generation
– Error handling

� Context free grammars, derivations, and parse trees

� Grammar Flow Analysis

� Pushdown automata

� Top-down syntax analysis

� Bottom-up syntax analysis

2

Syntax Analysis (Parsing)

� Functionality

Input Sequence of symbols (tokens)
Output Parse tree

� Report syntax errors, e,g., unbalanced parentheses

� Create “ ‘pretty-printed” version of the program (sometimes)

� In some cases the tree need not be generated (one-pass compilers)

3

Handling Syntax Errors

� Report and locate the error (symptom)

� Diagnose the error

� Correct the error

� Recover from the error in order to discover more errors
(without reporting errors caused by others)

Example
a := a ∗ (b + c ∗ d ;

4

Error Diagnosis Data

� Line number (may be far from the actual error)

� The current symbol

� The symbols expected in the current parser state

� Parser configuration

5

Example Context Free Grammar (Section)

Stat → If_Stat |
While_Stat |
Repeat_Stat |
Proc_Call |
Assignment

If_Stat → if Cond then Stat_Seq else Stat_Seq fi |
if Cond then Stat_Seq fi

While_Stat → while Cond do Stat_Seq od
Repeat_Stat → repeat Stat_Seq until Cond
Proc_Call → Name (Expr_Seq)
Assignment → Name := Expr
Stat_Seq → Stat |

Stat_Seq; Stat
Expr_Seq → Expr |

Expr_Seq, Expr

6

Context-Free-Grammar Definition

A context-free-grammar is a quadruple G = (VN ,VT ,P , S) where:

� VN — finite set of nonterminals

� VT — finite set of terminals

� P ⊆ VN × (VN ∪ VT)
∗ — finite set of production rules

� S ∈ Vn — the start nonterminal

7

Examples

G0 = ({E ,T ,F}, {+, ∗, (,), id},P0,E)

P0 =







E → E + T | T
T → T ∗ F | F
F → (E) | id







G1 = ({E}, {+, ∗, (,), id},P1,E)

P1 = {E → E + E | E ∗ E | (E) | id}

8

Derivations

A context-free-grammar G = (VN ,VT ,P , S)

� ϕ =⇒ ψ

if there exist ϕ1, ϕ2 ∈ (VN ∪ VT)
∗, A ∈ VN

– ϕ ≡ ϕ1 A ϕ2

– A → α ∈ P

– ψ ≡ ϕ1 α ϕ2

� ϕ
∗

=⇒ ψ reflexive transitive closure

� The language defined by G

L(G) = {w ∈ V
∗

T | S
∗

=⇒ w}

9

Reduced and Extended Context Free Grammars

A nonterminal A is

reachable: There exist ϕ1, ϕ2 such that S
∗

=⇒ ϕ1Aϕ2

productive: There exists w ∈ V ∗

T , A
∗

=⇒ w

Removal of unreachable and non-productive nonterminals and the
productions they occur in doesn’t change the defined language.
A grammar is reduced if it has neither unreachable nor non-productive
nonterminals.
A grammar is extended if a new startsymbol S ′ and a new production
S ′ → S are added to the grammar.
From now on, we only consider reduced and extended grammars.

10

Syntax-Tree (Parse-Tree)

� An ordered tree.

� Root is labeled with S .

� Internal nodes are labeled by nonterminals.

� Leaves are labeled by terminals or by ε.

� For internal nodes n: Is n labeled by N and are its children
n.1, . . . , n.np labeled by N1, . . . ,Nnp , then N → N1, . . . ,Nnp ∈ P .

11

Examples

E

id

E

E

E

E

id id∗ + +∗id id

E

E

E

E

id

E

++

E

id

E

E

E

E

id id+ +id id

E

E

E

E

id

E

12

Leftmost (Rightmost) Derivations

Given a context-free grammar G = (VN ,VT ,P , S)

� ϕ =⇒
lm

ψ if there exist ϕ1 ∈ V ∗

T , ϕ2 ∈ (VN ∪ VT)
∗, and A ∈ VN

– ϕ ≡ ϕ1 A ϕ2

– A → α ∈ P

– ψ ≡ ϕ1 α ϕ2 replace leftmost nonterminal

� ϕ =⇒
rm

ψ if there exist ϕ2 ∈ V ∗

T , ϕ1 ∈ (VN ∪ VT)
∗, and A ∈ VN

– ϕ ≡ ϕ1 A ϕ2

– A → α ∈ P

– ψ ≡ ϕ1 α ϕ2 replace rightmost nonterminal

� ϕ
∗

=⇒
lm

ψ, ϕ
∗

=⇒
rm

ψ are defined as usual

13

Ambiguous Grammar

A grammar that has (equivalently)

� two leftmost derivations for the same string,

� two rightmost derivations for the same string,

� two syntax trees for the same string.

14

