
Code Generation: Intro

Sebastian Hack
Saarland University

Compiler Construction
W2015

computer science

saarland
university

1

Code Generation
Consists (roughly) of three parts:
1. Instruction Selection

Select processor instructions for IR instructions

2. Instruction Scheduling
Linearize data-dependence graph of each basic block.

3. Register Allocation
For each program point, decide which IR variable resides in what
register or in memory.

Properties:

� All three are influence each other (phase ordering problem)
� For reasonably realistic scenarios,

each one is a NP-hard optimization problem
� Compilers usually attack them heuristically

(which works ok, often well)
2

Target Properties that Compilers have to care about

� Instruction set architecture (ISA) of the CPU
– How to “talk” to the processor
– Affects several optimizations and transformations

� Aspects of the CPU’s implementation
– Organization of instruction execution (pipeline)
– Memory hierarchy topology
(cache sizes, associativity, sharing among cores)

– Core topology (for automatic parallelization)

� Conventions of the runtime / operating system
– parameter passing of subroutines in libraries
– how to address global data
– interface to garbage collector
– . . .

3

Instruction Set Architectures

� RISC
– Many registers, typically 32
– Few simple address modes
– Load-/store-architecture
– three-address code: Rz ← Rx ⊕ Ry
– constant-length instruction encoding, typically 4 bytes
– VLIW like RISC but compiler packs insns into bundles and manages
parallel exec of instructions

� CISC
– Fewer registers, 8–16
– Complex address modes
– Memory operands
– two-address code: Rx ← Rx ⊕ Ry
– variable-length instruction encoding (x86: from 1 to 15 bytes)

Beware of the classical RISC / CISC debate! Today, most CPUs are RISC inside but might have

CISC ISA. The processor translates CISC instructions into RISC instructions internally

4

ISA Examples: MIPS

� prototypical RISC ISA

� 32 registers

� minimal core instruction set

int *A;
...
A[i+2] += 100

$a0 = A, $a1 = i
sal $t0 $a1 2
addu $t0 $a0 $t0
lw $t1 8($t0)
addiu $t1 $t1 100
sw $t1 8($t0)

= 20 Bytes

5

ISA Examples: x86
� CISC ISA

� 8 Registers (64-bit mode 16 registers)

� Powerful addressing modes:
base register + (1,2,4) * index register + constant

� For many instructions, one operand can be a memory cell (instead of
reg)

� Inhomogeneous register usage:
some registers only work with some instructions

� Hundreds of instructions in vector extensions

int *A;
...
A[i+2] += 100

ebx = A, ecx = i
mov eax , 100
add [ebx + ecx*4 + 8], eax

= 5 Byte
6

ISA Examples: ARM
� RISC-style: load/store, fixed-size insns, three-adress code

� CISC-style: addressing modes (barrel shifter, pre/post
increment/decrement)

� 15 Registers (Reg 15 is PC)

� Every instruction can be predicated (effect only on certain condition)
Addressing Modes:
RSB r9, r5, r5 , LSL #3 ; r9 = r5 * 8 - r5 or r9 = r5 * 7
SUB r3, r9, r8 , LSR #4 ; r3 = r9 - r8 / 16
ADD r9, r5, r5 , LSL #3 ; r9 = r5 + r5 * 8 or r9 = r5 * 9
LDR r2, [r0, r1 , LSL #2] ; r2 = M[r0 + 4 * r1]
LDR r2, [r1], #4 ; r2 = M[r1], r1 = r1 + 4

Predication:

CMP r3 ,#0
BEQ skip
ADD r0,r1,r2

skip:

CMP r3 ,#0
ADDNE r0 ,r1,r2

7

Hardware Properties relevant to the Compiler

� In-order execution:
– Compiler has to manage instruction level parallelism
– Instruction scheduling very important
direct influence on code latency

– Cores have different functional units / pipes
Not every instruction can go into each pipe

– VLIW processors allow to pack instructions into bundles

� Out-of-order execution:
– Processor schedules instructions to functional units dynamically
Analyzes data dependences of instruction stream

– Resolves false dependencies by register renaming:
Internally, processor has way more regs than the ISA has

– Instruction scheduling less important because done by CPU
– List of instruction merely a “data structure” to communicate the data
dependence graph to the processor

– Avoiding spill code is more important (critical)

8

Out-of-order vs. In-order

� OOO costs more energy

� OOO allows for worse compilers

� OOO goes well along with speculation

� Modern OOO processors speculate over several loop iterations to keep
the FUs busy

� Hard to imagine that something similar can be done statically

� Itanium (high-performance Intel VLIW CPU from the 2000s) is
considered a failure

� Unclear, if same performance for less energy can be achieved with
in-order arch and better compilers

9

