
computer science

saarland
university Prof. Dr. Sebastian Hack

Johannes Doerfert, B.Sc.

Compiler Construction WS15/16

Exercise Sheet 6

Exercise 6.1. Dominance and Data Flow
Develop a data flow analysis to compute the set of dominators of each block in a control flow graph. A control flow
graph (CFG) consists only of basic blocks and control flow edges between them. Further, a CFG has a unique start
node and each node is reachable from the start. A block A dominates a block B, if all paths from the start node
to B must go through A. A basic block is a maximal sequence of instructions, which start with a label and end in
a conditional or unconditional branch and does not contain any other label or branch. (The actual instructions do
not matter for dominance.) Consider the following aspects:

• What is the domain, which is a complete lattice, of the analysis? In particular, describe ⊥ and >.

• What is the join operator t?

• If a block A is dominated by a block B, then all predecessors of A are also dominated by B.

• Each block dominates itself.

• What does it mean that information is (un-)safe for this analysis?

• Is the analysis performed forwards (along the control flow) or backwards (against the control flow)?

• What is the initialisation at each block?

• What would be the set of dominators of an unreachable block?

Draw the CFG for the following program and perform dominance analysis. Label each basic block with an upper-
case letter.

void f (void) {
i f (. . .) {

whi le (. . .) {
i f (. . .)

break ;
}

} e l s e {
}

}

Exercise 6.2. Monotinicity and Ascending Chains
In the lecture we saw the following two properties of a function f :

• Monotinicity: x ≤ y → f(x) ≤ f(y)

• Ascending Chain: x ≤ f(x)

Show that, in general, neither implies the other.

1

Project task E. Semantic Analysis
Implement semantic analysis.
• You can perform this either during parsing and AST construction or as a separate phase.
• Semantic analysis augments --parse and --print-ast.
• Major parts are name and type analysis. Name analysis associates identifiers with declarations. Type analysis

associates expressions with types. It encompasses the Constraints and Semantics clauses.
• If you delayed certain syntactic checks (e.g. rejecting a || b = c), perform them now.
• The only null pointer constant, which you need to support, is literal 0.
• The previous restriction and the restricted language subset ensure, that it is not necessary to evaluate the

value of any expressions during semantic analysis.
• It is not necessary to accept programs, which contain functions, that return a struct or have one as parameter.

Similarily, it is not necessary to accept programs, which contain assignments of struct type.
• It is not necessary to accept programs, which contain anonymous structs.
• You do not need to handle __func__.
• Use int for the types ptrdiff_t and size_t.
• Due to the restricted language subset, type compatibility degenerates to equality.
• For the error location use the location of the (first) terminal of the syntactic construct, where the error was

detected. E.g. for adding two pointers, show the location of the +. For an if, whose condition is not scalar,
show the location of the keyword if.

• If you are uncertain about some aspect, ask!

2

