
Code Generation

Code Generation

– Wilhelm/Maurer: Compiler Design, Chapter 12 –
Reinhard Wilhelm

Universität des Saarlandes
wilhelm@cs.uni-sb.de

and
Mooly Sagiv

Tel Aviv University

11. Januar 2010

Code Generation

“Standard” Structure

source(text)

?
lexical analysis(7)

finite automata
?

tokenized-program

?
syntax analysis(8)

pushdown automata
?

syntax-tree

?
semantic-analysis(9)

attribute grammar evaluators
?

decorated syntax-tree

?
optimizations(10)

abstract interpretation + transformations
?

intermediate rep.

?
code-generation(11, 12)

tree automata + dynamic programming + · · ·
?

machine-program

Code Generation

Code Generation

Real machines (instead of abstract machines):

◮ Register machines,

◮ Limited resources (registers, memory),

◮ Fixed word size,

◮ Memory hierarchy,

◮ Intraprocessor parallelism.

Code Generation

Architectural Classes: CISC vs. RISC

CISC IBM 360, PDP11, VAX series, INTEL 80x86, Pentium, Motorola 680x0

◮ A large number of addressing modes
◮ Computations on stores
◮ Few registers
◮ Different instruction lengths
◮ Different execution times for instructions
◮ Microprogrammed instruction sets

RISC Alpha, MIPS, PowerPC, SPARC

◮ One instruction per cycle (with pipeline for load/stores)
◮ Load/Store architecture – Computations in registers (only)
◮ Many registers
◮ Few addressing modes
◮ Uniform lengths
◮ Hard-coded instruction sets
◮ Intra-processor parallelism: Pipeline, multiple units, Very Long

Instruction Words (VLIW), Superscalarity, Speculation

Code Generation

Phases in code generation

Code Selection: selecting semantically equivalent sequences of
machine instructions for programs,

Register Allocation: exploiting the registers for storing values of
variables and temporaries,

Code Scheduling: reordering instruction sequences to exploit
intraprocessor parallelism.

Optimal register allocation and instruction scheduling are NP-hard.

Code Generation

Phase Ordering Problem

Partly contradictory optimization goals:

Register allocation: minimize number of registers used =⇒ reuse
registers,

Code Scheduling: exploit parallelism =⇒ keep computations
independent, no shared registers

Issues:

◮ Software Complexity

◮ Result Quality

◮ Order in Serialization

Code Generation

Challenges in real machines: CISC vs. RISC

CISC IBM 360, PDP11, VAX series, INTEL 80x86, Motorola 680x0

◮ A large number of addressing modes
◮ Computations on stores
◮ Few registers
◮ Different instruction lengths
◮ Different execution times for instructions
◮ Microprogrammed instruction sets

RISC Alpha, MIPS, PowerPC, SPARC

◮ One instruction per cycle (with pipeline for load/stores)
◮ Load/Store architecture – Computations in registers (only)
◮ Many registers
◮ Few addressing modes
◮ Uniform lengths
◮ Hard-coded instruction sets
◮ Intra-processor parallelism: Pipeline, multiple units, Very Long

Instruction Words (VLIW), Superscalarity, Speculation

Code Generation

Example: x = y + z

CISC/Vax addl3 4(fp), 6(fp), 8(fp)

RISC

load r1, 4(fp)
load r2, 6(fp)
add r1, r2, r3
store r3, 8(fp)

Code Generation

The VLIW Architecture

◮ Several functional units,

◮ One instruction stream,

◮ Jump priority rule,

◮ FUs connected to register banks,

◮ Enough parallelism available?

FUFUFU

-

666?

666
??????

6
?

6
?

6
?

store
Instruction

unit
Control

. . .

Register set

Main Memory

Code Generation

Instruction Pipeline

Several instructions in different states of execution
Potential structure:

1. instruction fetch and decode,

2. operand fetch,

3. instruction execution,

4. write back of the result into target register.

cycle
1 2 3 4 5 6 7

Pipe- 1 B1 B2 B3 B4

line- 2 B1 B2 B3 B4

stage 3 B1 B2 B3 B4

4 B1 B2 B3 B4

Code Generation

Pipeline hazards

◮ Cache hazards: Instruction or operand not in cache,

◮ Data hazards: Needed operand not available,

◮ Structural hazards: Resource conflicts,

◮ Control hazards: (Conditional) jumps.

Code Generation

Program Representations

◮ Abstract syntax tree: algebraic transformations, code
generation for expression trees,

◮ Control Flow Graph: Program analysis (intraproc.)

◮ Call Graph: Program analysis (interproc.)

◮ Static Single Assignment: optimization, code generation

◮ Program Dependence Graph: instruction scheduling,
parallelization

◮ Register Interference graph: register allocation

Code Generation

Code Generation: Integrated Methods

◮ Integration of register allocation with instruction selection,

◮ Machine with interchangeable machine registers,

◮ Input: Expression trees

◮ Simple target machines.

◮ Two approaches:

1. Ershov[58], Sethi&Ullman[70]: unique decomposition of
expression trees,

2. Aho&Johnson[76]: dynamic programming for more complex
machine models.

Code Generation

Contiguous evaluation

(Sub-)expression can be evaluated into

register: this register is needed to hold the result,

memory cell: no register is needed to hold the result.

Contiguous evaluation of an expression, thus, needs 0 or 1 registers
while other (sub-)expressions are evaluated.
Evaluate-into-memory-first strategy: evaluate subtrees into memory
first.
Contiguous evaluation + evaluate-into-memory-first define a
normal form for code sequences.
Theorem (Aho&Johnson[76]): Any optimal program using no more
than r registers can be transformed into an optimal one in normal
form using no more than r registers.

Code Generation

Simple machine model, Ershov[58], Sethi&Ullman[70]

◮ r general purpose nterchangeable registers R0, . . . ,Rr−1,

◮ Two-address instructions
Ri := M[V] Load
M[V] := Ri Store
Ri := Ri op M[V] Compute
Ri := Ri op Rj

Two phases:

1. Computing register requirements,

2. Generating code, allocating registers and temporaries.

Code Generation

Example Tree

Source r := (a + b) − (c − (d + e))

Tree

ed

cba

r

+

+

−

−

:=

Code Generation

Generated Code

2 Registers R0 and R1

Two possible code sequences:
R0 := M[a] R0 := M[c]
R0 := R0 + M[b] R1 := M[d]
R1 := M[d] R1 := R1 + M[e]
R1 := R1 + M[e] R0 := R0 − R1

M[t1] := R1 R1 := M[a]
R1 := M[c] R1 := R1 + M[b]
R1 := R1 − M[t1] R1 := R1 − R0

R0 := R0 − R1 M[f] := R1

M[f] := R0

stores result for c − (d + 2) evaluates c − (d + 2) first
in a temporary (needs 2 registers)
no register available saves one instruction

Code Generation

The Algorithm

Principle: Given tree t for expression e1 op e2

t2t1

op

t1 needs r1 registers, t2 needs r2 registers,

r ≥ r1 > r2: After evaluation of t1:
r1 − 1 registers freed, one holds the result,
t2 gets enough registers to evaluate, hence
t can be evaluated in r1 registers,

r1 = r2: t needs r1 + 1 registers to evaluate,

r1 > r or r2 > r : spill to temporary required.

Code Generation

Labeling Phase

◮ Labels each node with its register needs,

◮ Bottom-up pass,

◮ Left leaves labeled with ’1’ have to be loaded into register,

◮ Right leaves labeled with ’0’ are used as operands,

◮ Inner nodes:

regneed (op(t1, t2)) =

{

max (r1, r2), if r1 6= r2
r1 + 1, if r1 = r2

where r1 = regneed(t1), r2 = regneed(t2)

Code Generation

Example

2

1

2

2

1

01

101

ed

cba

f

+

+

−

−

:=

Code Generation

Generation Phase

Principle:

◮ Generates instruction Op for operator op in op(t1, t2) after
generating code for t1 and t2.

◮ Order of t1 and t2 depends on their register needs,

◮ The generated Op–instruction finds value of t1 in register,

◮ RSTACK holds available registers, initially all registers,
Before processing t: top(RSTACK) is determined as result
register for t,
After processing t: all registers available,
but top(RSTACK) is result register for t.

◮ TSTACK holds available temporaries.

Code Generation

Algorithm Gen_Opt_Code

Algorithm RSTACK-Contents
result register

var RSTACK: stack of register;
var TSTACK: stack of address;
proc Gen_Code (t : tree); (R ′,R ′′, . . .)
var R : register, T : address;
case t of

(leaf a, 1) : (∗left leaf∗)
emit(top(RSTACK) := a); result in R ′

op((t1, r1), (leaf a, 0)) : (∗right leaf∗)
Gen_Code(t1);
emit(top(RSTACK) := top(RSTACK) Op a); result in R ′

Code Generation

op((t1, r1), (t2, r2)) : (R ′, R ′′, . . .)
cases

r1 < min(r2, r): (R ′, R ′′, . . .)
begin

exchange(RSTACK); (R ′′, R ′, . . .)
Gen_Code(t2); result in R ′′

R := pop(RSTACK); (R ′, . . .)
Gen_Code(t1); result in R ′

emit(top(RSTACK) := top(RSTACK) Op R); result in R ′

push(RSTACK , R); (R ′′, R ′, . . .)
exchange(RSTACK); (R ′, R ′′, . . .)

end ;

Code Generation

r1 ≥ r2 ∧ r2 < r : (R ′,R ′′, . . .)
begin

Gen_Code(t1); result in R ′

R := pop(RSTACK); (R ′′, . . .)
Gen_Code(t2); result in R ′′

emit(R := R Op top(RSTACK)); result in R ′

push(RSTACK ,R); (R ′,R ′′, . . .)
end ;

Code Generation

r1 ≥ r ∧ r2 ≥ r : (R ′, R ′′, . . .)
begin

Gen_Code(t2); result in R ′

T := pop(TSTACK);
emit(M [T] := top(RSTACK)); result in M [T]
Gen_Code(t1); result in R ′

emit(top(RSTACK) := top(RSTACK) Op M [T]); result in R ′

push(TSTACK , T);
end ;

endcases

endcase

endproc

Code Generation

Dynamic Programming, Aho&Johnson[76]

◮ More complex architecture,
◮ r general purpose registers R0, . . . , Rr−1,

◮ Instruction formats:
Ri := e Compute
Ri := M [V] Load
M [V] := Ri Store

e term with register and memory-cell operands,
costs c(I) associated with each instruction I .

◮ Goal: Generate a cheapest instruction sequence using no more
than r registers.

Code Generation

Canonical recursive solution

◮ Assume e of instruction Ri := e matches tree t, and j registers
are available

◮ some subtrees of t corresp. to memory operands of e – computed
into memory first, no registers occupied after that

◮ let e have k register operands; compute corresponding subtrees
t1, t2, . . . , tk into registers:

◮ for all permutations i1, i2, . . . , ik for the evaluation of t1, t2, . . . , tk :
generate optimal code for ti1 using no more than j registers, ti2 with
no more than j − 1, . . . , tk with no more than j − k + 1
add the minimal costs for computing all subtrees in this way
to the costs of e to yield the minimal costs for this combination

◮ Doing it for all potential combinations recomputes the costs for
subtrees =⇒ exponential complexity

Code Generation

Dynamic Programming, the Principle

◮ Partition the problem into subproblems, here code generation
for an expression into code generation for subexpressions,

◮ combine optimal solutions to the subproblems to optimal
solution of the problem.

How to obtain a partition? — by tree parsing: a match of the
expression decomposes the tree into
the pattern and a sequence of subtrees, some to be computed into
memory, the others into registers.

X3 X4X1

t1

X2

e

t2 t3 t4

Code Generation

Optimal Solutions

There may be several optimal solutions for subexpressions using
different number of registers!
Therefore, explore all permutations for the subtrees to be computed
into registers.

Code Generation

Dynamic Programming

◮ Convert top-down algorithm into bottom-up algorithm
tabulating partial solutions

◮ Associate cost vector C [0..r] with each node n,
C[0] cheapest costs for computing t/n into a temporary,
C[i] cheapest costs computing t/n into a register using i
registers.

◮ Compute cost vector at n minimizing over all “legal”
combinations of

◮ one applicable instruction,
◮ the cost vectors of the nodes “under” non–terminal nodes in

the applied rule.

◮ What is a legal combination for C [j], j > 0?
A combination of generated code for subtrees needing ≤ j
registers.

◮ Extract cheapest instruction sequence in a second pass.

Code Generation

Global Register Allocation
So far, register allocation for assignments.
Now, register allocation across whole procedures/programs,
Tasks of the Register Allocator:

1. determine candidates, i.e., variables and intermediate results,
called Symbolic Registers, to keep in real registers, and
determine their “life spans”.

2. assign symbolic registers without “collisions” to real registers
using some optimality criterion,

3. modify the code to implement the decisions.

Constraint for assignment:

◮ Two symbolic registers collide if their contents are “live” at the
same time,

◮ Colliding symbolic registers cannot be allocated to the same
real register.

Code Generation

Definitions

◮ A definition of a symbolic register is the computation of an
intermediate result or the modification of a variable,

◮ A use of a symbolic register is a reading access to the
corresponding variable or a use of the intermediate value,
Note: uses of symbolic registers in an individual computation
step, e.g. execution of an instruction or of an assignment
precede definitions of symbolic registers.

◮ A definition–path of s to program point p is a path from the
entry point of the program to p containing a definition of s,

◮ A use–path from p is a definition-free path starting at p
containing a use of s,

◮ Symbolic register s is live at program point p if
exists a definition–path to p and a use–path from p,

Code Generation

◮ The life span of s is the set of all program points, on which s
is live.
Value of a live symbolic register may still be used.

◮ Two life spans of symbolic registers collide if one of the
registers is set in the life span of the other.

:= X

X:=

:= X

X:=

:= X

A life span for variable X

Code Generation

Computation of life ranges

Needs du (definition-use) chains.
A du (definition-use) chain connects a definition of a variable to all
the associated uses, i.e., uses that a value set at the definition may
flow to.
Two du chains are use-connected iff they share a use.
One could say, shared uses were vel-defined1.
A life range of a variable is the connected component of all
use-connected du chains of that variable.

1
Thanks to Raimund Seidel

Code Generation

Register Interference Graph

◮ nodes – life spans,

◮ edge between colliding life spans.

Allows to view the register-allocation problem as a graph coloring
problem.

◮ k physical registers available,

◮ Solve k–coloring problem,

◮ NP–complete for k > 2,

◮ Use heuristics.

Code Generation

Algorithm

:= X

X:=

:= X

X:=

:= X

Build constructs the register interference graph G ,

Reduce initializes an empty stack;
repeatedly removes locally colorable nodes and pushes
them onto the stack.
Continue at Assign Colours, if arrived at the empty
graph: G is k-colorable
Continue at Spill if locally uncolorable nodes remain
in the graph.

Code Generation

Algorithm cont’d

Assign Colours pops nodes from the stack,
reinserts them into the graph,
and assigns a color not assigned to any neighbour.

Spill uses heuristics to select one node (variable) to spill to
memory,
inserts a load before each use of the variable and a
store after each definition.
Then continues with Build.

The classical method by Chaitin uses degree(n) < k as
local-colorability criterion.
It means, n and its neighbours can be colored with different colors.

Code Generation

Properties

◮ Assign Colours pops nodes off the stack in reverse order as
Reduce pushed them onto the stack.

◮ The degree(n) < k criterium holding, when n was pushed,
guarantees colorability.

◮ Termination:
Reduce repeatedly removes nodes from the finite set of nodes;
each cycle through Spill reduces the graph by 1 node.

Code Generation

Heuristics for Node Removal

1. degree of the node: high degree causes many deletions of
edges,

2. costs of spilling.

Code Generation

Example

Input-program Symbolic Reg. Assign. After Register Allocation
x := 1
y := 2
w := x + y
u := y + 2
z := x * y
x := u + z
print x,z,u

Code Generation

Example

Input-program Symbolic Reg. Assign. After Register Allocation
x := 1 s1 := 1
y := 2 s2 := 2
w := x + y s3 := s1 + s2
u := y + 2 s4 := s2 + 2
z := x * y s5 := s1 * s2
x := u + z s6 := s4 + s5
print x,z,u print s6,s5,s4

Code Generation

Example

Input-program Symbolic Reg. Assign. After Register Allocation
x := 1 s1 := 1
y := 2 s2 := 2
w := x + y s3 := s1 + s2
u := y + 2 s4 := s2 + 2
z := x * y s5 := s1 * s2
x := u + z s6 := s4 + s5
print x,z,u print s6,s5,s4

Register interference graph
s3

s1

s2

s4 s5

s6

Code Generation

Example

Input-program Symbolic Reg. Assign. After Register Allocation
x := 1 s1 := 1
y := 2 s2 := 2
w := x + y s3 := s1 + s2
u := y + 2 s4 := s2 + 2
z := x * y s5 := s1 * s2
x := u + z s6 := s4 + s5
print x,z,u print s6,s5,s4

Register interference graph
s6s3

s1

s2

s4 s5

Code Generation

Example

Input-program Symbolic Reg. Assign. After Register Allocation
x := 1 s1 := 1 r1 := 1
y := 2 s2 := 2 r2 := 2
w := x + y s3 := s1 + s2 r3 := r1 + r2
u := y + 2 s4 := s2 + 2 r3 := r2 + 2
z := x * y s5 := s1 * s2 r1 := r1 + r2
x := u + z s6 := s4 + s5 r2 := r3 + r1
print x,z,u print s6,s5,s4 print r2,r1,r3

Register interference graph
s6s3

s1

s2

s4 s5

Code Generation

Problems

Architectural irregularities:

◮ not every physical register can be allocated to
every symbolic register,

◮ some symbolic registers need combinations of
physical registers, e.g. pairs of aligned registers.

Dedication: Some registers are dedicated for special purposes, e.g.
transfer of arguments.

Code Generation

Extensions

Remember: An edge in the interference graph means:
the connected objects can not be allocated to the same physical
register.
Assume, that physical register r can not be allocated to symbolic
register s.
Solution: Add nodes for physical registers to the interference graph;
connect r with s.
Disadvantage: Graph now describes program-specific constraints
(s1 and s2 live at the same time) and architecture-specific
constraints (fixed-point operands should not be allocated to
floating-point registers).

Code Generation

Separating Architectural and Program Constraints
Machine description:

Regs register names,

Conflict relation on Regs,
(r1, r2) ∈ Conflict iff r1 and r2 can not be allocated
simultaneously.
Example: registers and register pairs containing them.

Class Subsets of registers
◮ required as operands of instructions, or
◮ dedicated for special purposes of the run-time

system

Constraints on allocation (connection between symb. and phys.
registers)

◮ Association of register classes with symbolic registers
◮ Conjunction of constraints =⇒ intersection of register classes

is new register class.

Code Generation

Generalized Interference Graph

extended by assoc. register classes to symbolic registers.
Assignment for S ⊆ SymbRegs is A : S 7→ Regs such that
A(s) ∈ class(s) for all s ∈ S .
New local colorability criterion:
s ∈ S ⊆ SymbRegs is locally colorable iff
for all assigments A of the neighbours of s
there exists a register r ∈ class(s)
that does not conflict with the assignment on any neighbour.

Code Generation

Coloring the Generalized Interference Graph

Conflict

A:

B:

R0 R1 R2 R3

D0 D1

A A

B

s1 s2

s3

Register classes with conflicts and generalized interference graph.

s1 and s2 are locally colorable, s3 is not.
Old local-colorability criterion is satisfied, degree = 2 for all three
symb. registers.

Code Generation

Efficient Approximative Test for Local Colorability

Let A,B be two register classes.

maxConflictA(B) = max
a∈A

|{b ∈ B |(a, b) ∈ Conflict}|

maximal numer of registers in B , that a single register in A can
conflict with.
Approximative colorability test for s with class(s) = B :

∑

(s,s′)∈E ,class(s′)=A

maxConflictA(B) < |B |

Precompute maxConflictA(B) for all A and B ,
depends only on the architecture!

Code Generation

Example

Conflict

A:

B:

R0 R1 R2 R3

D0 D1

A A

B

s1 s2

s3

Tabulating maxConflictsC (D)
C\D A B

A
B

Code Generation

Example

Conflict

A:

B:

R0 R1 R2 R3

D0 D1

A A

B

s1 s2

s3

Tabulating maxConflictsA(B)
C\D A B

A 1 1
B 2 1

