Global Value Numbering

Sebastian Hack
hack@cs.uni-saarland.de

13. Januar 2012

UNIVERSITAT
DES
SAARLANDES

Value Numbering

a:=2 a:=3
x:=a+1 x:=a+1
y=a+1

m Replace second computation of a + 1 with a copy from x

N

Value Numbering

m Goal: Eliminate redundant computations

m Find out if two variables have the same value at given program point
> In general undecidable

m Potentially replace computation of latter variable with contents of the
former

m Resort to Herbrand equivalence:
» Do not consider the interpretation of operators

» Two expressions are equal if they are structurally equal

m This lecture: A costly program analysis which finds all Herbrand
equivalences in a program and a “light-weight” version that is often
used in practice.

Herbrand Interpretation

m The Herbrand interpretation Z of an n-ary operator w is given as
I(w): T"=>T Z(w)(tr,...,tn) = w(ts,..., tn)
Especially, constants are mapped to themselves
m With a state o that maps variables to terms

c:V—>T

m we can define the Herbrand semantics (t)o of a term t

(t)o = {O'(V) if t = v is a variable
| Z(W) (o, .., (o) ift=w(xt, ..., Xn)

Programs with Herbrand Semantics

m We now interpret the program with respect to the Herbrand semantics

m For an assignment
X <4t

the semantics is defined by:
[x « t]o = o [(t)o/x]

m The state after executing a path p: /1,...,£, starting with state og
is then:

[ploo == ([£al o - - - o [fa])oo

m Two expressions t; and tp are Herbrand equivalent at a program
point £ iff
Vp:r,....0.(t)[ploo = (t2)[ploo

Kildall's Analysis

m Track Herbrand equivalences with a forward data flow analysis

m A lattice element is a structured partition of the terms and variables
of the program

» Two terms in the same partition are deemed equivalent
» A partition 7 is structured iff
(e,qawe) emA(er,ef) EmA(ene) em = (e, e weh)
m Two partitions are joined by intersecting them

m | is the partition that contains all terms and variables
i optimistically assume all variables/terms are equivalent

m The initial value for the start node is the partition that consists of
singleton equivalence classes
1= at the beginning, nothing is equivalent

Kildall's Analysis

Example
0
0
0 0
a:=2 a:=3
x:=a+1 x:=a+1
{[a,2],[x,a+ 1,2+ 1]} {la,3], Jx,a+ 1,3+ 1]}
{bx,a+ 1}
y=a+1

{lx.y,a+1]}

Kildall's Analysis

Transfer Functions

. of an assignment
l:x+t

m Compute a new partition checking (in the old partition) who is
equivalent if we replace x by t

Fo(m) = {(t1, ©2) | (ta[t/x], t2[t/x]) € 7}

Kildall's Analysis

Example

Kildall's Analysis

Example

{[x,0],ly,x+1,0+1]}

{[Yax+1]} /_\ {[y,X—|—1]}

y=y+1 x:=x+1
{bxoy]) J\/ J (b1}

10

Kildall's Analysis

Comments

m One can show that Kildall's Analysis is sound and complete

m However, it suffers from exponential explosion (pathological):
> In the worst case w1 M7, can have || - |m2| equiv. classes

» In a naive implementation also the size of one equiv. class can explode
due to the structuring constraint. For example:

m={[a, b],[c,d],[e,f],[x,a+ c,a+ d, b+ c, b+ d],
ly,x+e,x+rf,(a+c)+e,...,(b+d)+f]}

m Thus: not used in practice

11

The Alpern, Wegman, Zadeck (AWZ) Algorithm

Incomplete

m Flow-insensitive

» does not compute the equivalences for every program point but sound
equivalences for the whole program

m Uses SSA

» Control-flow joins are represented by ¢s
» Treat ¢s like every other operator (cause for incompleteness)
» SSA compensates flow-insensitivity

Interpret the SSA data dependence graph as a finite automaton and
minimize it

» Refine partitions of “equivalent states”

» Using Hopcroft's algorithm, this can be done in O(e - log e)

The AWZ Algorithm

m In contrast to finite automata, do not create two partitions but a
class for every operator symbol

» Note that the ¢'s block is part of the operator
» Two ¢s from different blocks have to be in different classes

m Optimistically place all nodes with the same operator symbol in the
same class

» Finds the least fixpoint

» You can also start with singleton classes and merge but this will (in
general) not give the least fixpoint

m Successively split class when two nodes in the class are detected
not equivalent

13

The AWZ Algorithm

Example

x:=x+1
y=y+1

14

The AWZ Algorithm

Example

X ‘= X1
Y2i=n

+1 X1 ::¢2
+1| |y1:=¢2

15

The AWZ Algorithm

Example

'@ Xl '@ "

The AWZ Algorithm

Example

17

Kildall compared to AWZ

dag =2

Xp:=ag+1

yoi=a+1

312:3
x1:=a+1

a := ¢4(ao, a1)
X2 = ¢a(x0, X1)

18

Kildall compared to AWZ

Kildall compared to AWZ

