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Partial Orders

Let P be a set. A binary relation C on P is a partial order iff it is:
reflexive: (Vx € P)x C x
transitive: (Vx,y,z€ P)xCyAyCz = xLCz
antisymmetric: (Vx,y € P)xCyAyCx = x=y

An element L with L C x for all x € P is called bottom element. It is

unique by definition. Analogously, T is called top element, if T J x for all
x € P.



Duality

Let P an ordered set. The dual PP of P is obtained by defining x C y in
PP whenever y C x in P.

For every statement ® about P there is a dual statement ®2 about PP. It
is obtained from P by exchanging C by J.

If ® is true for all ordered sets, ®P is also true for all ordered sets.



Hasse Diagrams

A partial order (P,C) is typically visualized by a Hasse diagram:
m Elements of P are points in the plane
m If x C z, then z is drawn above x.

m If x C z, and there is no y with x C y C z, then x and z are
connected by a line

The Hasse diagram of the dual of P is obtained by “flipping” the one of P
by 180 degrees.



Upper and Lower Bounds

Let (P,C) be a partial ordered set and let S C P. An element x € P is a
lower bound of S, if x C s for all s € S. Let

St={xeP|(VseS)xLCs}
be the set of all lower bounds of the set S. Analogously:

SY={xeP|(VseS)x s}
Note: 4 = (¢ = P.

If S¢ has a greatest element, this element is called the greatest lower
bound and is written inf S. (Dually for least upper bound and sup S.) The
greatest lower bound only exists, iff there is a x € P such that

(Vy e P)(((Vs€ S)sJy) <= xJy)



Lattices

The order-theoretic definition

Let P be an ordered set.
m If sup{x, y} and inf{x, y} exist for every pair x,y € P
then P is called a lattice.

m If For every S C P, sup S and inf S exist,
then P is called a complete lattice.



The Connecting Lemma

Let L be a lattice and let a, b € L. The following statements are equivalent:
alb
inf{a, b} = a
sup{a, b} = b



Lattices

The algebraic definition

We now view L as an algebraic structure (L; L, 1) with two binary
operators

x Uy :=sup{x,y} x My :=inf{x,y}
Theorem: LI and 1M satisfy for all a, b, c € L:

(Ll) (aUb)Uc=all(blUc)  associativity

(L1)P (amb)nc=am(bnc)

(L ) allb=bla commutativity
(L2)P amb=bna

(L3) alla=a idempotency
(L13)P arna=a

(L4) aU(amnb)=a absorption
(L4 am(aub)=a



Lattices

The algebraic definition

We now view L as an algebraic structure (L; L, 1) with two binary
operators

x Uy :=sup{x,y} x My :=inf{x,y}
Theorem: LI and 1M satisfy for all a, b, c € L:

(Ll) (aUb)Uc=all(blUc)  associativity

(L1)P (amb)nc=am(bnc)

(L ) allb=bla commutativity
(L2)P amb=bna

(L3) alla=a idempotency
(L13)P arna=a

(L4) aU(amnb)=a absorption

(L4 am(aub)=a

Proof: (L2) is immediate because sup{x,y} = sup{y, x}. (L3), (L4) follow
from the connection lemma. (L1) for exercise. The dual laws come by
duality.



Lattices

From the algebraic to the order-theoretic definition

Let (L;U,M) be a set with two operators satisfying
(L1)—(L4) and (L1)P—(14)P

Theorem:
Define aC bon Lif allb = b. Then, C is a partial oder
With C, (L;C) is a lattice with

sup{a,b} =alUb and inf{a,b}=alb



Lattices

From the algebraic to the order-theoretic definition

Let (L;U,M) be a set with two operators satisfying

(L1)—(L4) and (L1)P—(14)P

Theorem:
Define aC bon Lif allb = b. Then, C is a partial oder
With C, (L;C) is a lattice with

sup{a,b} =alUb and inf{a,b}=alb

Proof:

reflexive by (L3), antisymmetric by (L2), transitive by (L1)
First show that all b € {a, b}" then show that
d € {a,b}" = (alU b) C d. Easy by applying the (L/) to the
suitable premises (Exercise).



Finite Lattices

Associativity allows us to write sequences of joins unambiguously without
brackets. One can show (by induction) that

U{al,...,an}:all_l---Ua,,

for {a1,...,an} € L, n > 2. Thus, for any finite, non-empty subset F € L,

| ] and [] exist.

Thus, every finite lattice bounded (as a greatest and least element) with

T=[|t L=[]tL

Further, every finite lattice is complete because

L=|]o T=[10
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Knaster-Tarski Fixpoint Theorem

Let L be a complete lattice and f : L — L be monotone. Then

[ [{xeLl]f(x)Cx}

is the least fixpoint of f. (The dual holds analogously).
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Knaster-Tarski Fixpoint Theorem

Let L be a complete lattice and f : L — L be monotone. Then

[ [{xeLl]f(x)Cx}

is the least fixpoint of f. (The dual holds analogously).

Proof: Let R := {x € L| f(x) C x} be the set of elements of which f is
reductive. Let x € R. Consider z =[] R. z exists, because L is complete.
z C x because z is a lower bound of x. By monotonicity, f(z) C f(x).
Because x € R, f(z) C x. Thus, f(z) is also a lower bound of R. Thus,
f(z) C y for all y € R. Because z is the greatest lower bound of R,

f(z) C z, thus z € R. By monotonicity, f(f(z)) C f(z). Hence, f(z) € R.
Because z is a lower bound of R, z C f(z) and z = f(z).
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Fixpoint by lteration

Let L be a complete finite lattice and f : L — L be monotone. Hence, every
chain a; C - .- C a, stabilizes, i.e. there is a k < n such that ay = ax41

It holds | C f(L)C f3(L)C...
d = f""1(L) = f"(L) is the smallest element d’ with f(d’) C d’



Fixpoint by lteration

Let L be a complete finite lattice and f : L — L be monotone. Hence, every
chain a; C - .- C a, stabilizes, i.e. there is a k < n such that ay = ax41

It holds | C f(L)C f3(L)C...

d = f""1(L) = f"(L) is the smallest element d’ with f(d’) C d’

Proof: (1) exercise. (2): d exists because of (1) and the assumption that
every ascending chain stabilizes. Consider another d’ J d with f(d') C d".
We show (by induction) that for every i € N there is f/( L) C d’.

Let i = 0: L C d’ holds. Now assume f"~1(1) C d’. Then

Fi(L)y=f(FY (L) Ccf(d)Cd



