
computer science

saarland
university

Prof. Dr. Reinhard Wilhelm
Prof. Dr. Sebastian Hack

Dipl.-Inform. Daniel Grund
Michael Jacobs, M.Sc.

Compiler Construction WS11/12

Exercise Sheet 7
Please hand in the solutions to the theoretical exercises until the beginning of the lecture next Friday 2011-12-09,

12:00. Please write the number of your tutorial group or the name of your tutor on the first sheet of your solution.

Exercise 7.1 Statements and Expressions (Points: 2+2+2+2)
Translate the following C-statements into valid CMa-instruction sequences. Assume i, x and y to be global
variables.

• i++;

• x = &y;

• while(e_1) {s_1; if (e_2) continue; s_2;}

• while(e_1) {s; if (e_2) break;}

Exercise 7.2 Extreme Pointer (Points: 4+4)
We have seen in the lecture that stack and heap grow towards each other in the store S. SP and NP denote the
Stack and the New pointer, respectively. During execution of a program we must make sure that SP and NP do
not pass each other. Without any extra provisions we would have to compare SP and NP on every update of
one of the two values. To save some work we introduce EP , the Extreme Pointer, which denotes the uppermost
cell to which SP may point to during the execution of the current function. This relieves us from checking for a
collision whenever SP is manipulated. EP can be determined statically. It depends on the maximal stack usage
during expression evaluation. Let t(e) denote the number of stack cells needed to evaluate expression e. Assume
e to be of the following form:

e ::= x | e1[e2] | e1 = e2 | e1 opb e2 | opue1

• Give a recursive definition for the computation of t(e)! Explain your definition briefly.

• Consider the following expressions:

ea ≡ (. . . ((x1 + x2) + x3) . . .+ xn)

eb ≡ (x1 + . . . (xn−2 + (xn−1 + xn)) . . .)

Assume n ∈ N and n ≥ 2. Provide formulas to calculate t(ea) and t(eb) depending on n. Prove the
correctness of your formulas by induction.

Exercise 7.3 Switch (Points: 2+2+2+2)
Translate the following switch statement into valid CMa code using the code generation rule in the lecture slides.
Use a context with ρ(n) = (L, 3) and ρ(i) = (G, 4).

1

switch (n)
{

case 0: i = n+2; break;
case 1: i = -n; break;
case 2: i = 1; break;
default: break;

}

Consider the following questions regarding switch statements.

1. Is this code generation able to handle switch statements where gaps between case statements exist (i.e. cases
are undefined)?

2. Is it always feasible to use jump tables to implement switch statements? Explain your answer!

3. Give a different alternative to implement code s for a general switch statement s. Discuss the (dis)advantages
of your scheme.

Exercise 7.4 CMa Code Generation (Points: 6, Bonus-Points: 4)
• Translate the following C code into CMa code using the algorithm presented in the lecture. Remember to

correctly compute the EP . Additional translation rules considering functions and whole programs can be
taken from the lecture slides.

1 int sum;
2
3 int summarize (int n) {
4 int i, sum;
5 for (i = 0; i < n; ++i)
6 sum = i+sum;
7 return sum;
8 }
9

10 void main () {
11 sum = summarize(42);
12 return;
13 }

• Determine the state of the CMa before the execution of line 5 and after the execution of line 11. In each
case, label variables in the stack and mark the stack frames.

2

