

Compiler Construction WS11/12

Exercise Sheet 5

Please hand in the solutions to the theoretical exercises until the beginning of the lecture next Friday 2011-11-25, 12:00. Please write the number of your tutorial group or the name of your tutor on the first sheet of your solution.

Exercise 5.1 LR(0) (Points: 6+2+2+2+4)

Let the grammar $G = (\{S', S, A, B, C\}, \{a, b, c, d\}, P, S')$ with productions P:

$$\begin{array}{rcl} S' & \rightarrow & S \\ S & \rightarrow & A \, B \mid A \\ A & \rightarrow & a \, C \, c \\ C & \rightarrow & b \, b \, C \mid b \\ B & \rightarrow & c \, d \end{array}$$

- 1. Construct the $LR_0(G)$ automaton with the direct construction algorithm from the lecture.
- 2. Mark all inadequate states in the $LR_0(G)$ automaton. For each inadequate state you have to enumerate all the conflicts (each conflict is a pair of items) and classify them.
- 3. Is G an SLR(1) grammar? Justify your answer.
- 4. Construct $LR_1(G)$ by adding lookahead sets. To keep your write-up short, only construct the LR(1)-items for the conflicting items in the LR(0)-inadequate states.
- 5. Give a successful run of the PDA $P_1(G)$ controlled by $LR_1(G)$ on the input word w = a b b b b b c c d. You can do this by creating a table containing columns for the current stack content, the remaining input and the next action. You do not need to formally specify $P_1(G)$. At which points of the run would there be conflicts if it was not for the lookahead sets added and why does your selection of the lookahead sets prevent these situations?

Exercise 5.2 LL(0) and LR(0) (Points: 2+2+2)

Prove or disprove the following claims:

- 1. All LL(0) languages are also LR(0) languages.
- 2. All regular languages are LR(0).
- 3. Not all LR(0) languages are regular.

Exercise 5.3 Project

Next project assignment is available online.