4.2 Attribute Grammars 121

bottom_up_elirfroot);

top_down_elirfroot);

check whether now alipssets have exactly one element; otherwise report an error
end

It looks like the bottom-up elimination and the top-dowmeghation do the same thing. This is
almost correct. Figure 4.5 shows a combinatioropf- andop, labeled nodes. Each node is associ-
ated with the set of potential definitions of the operatortt®n-up elimination possibly eliminates
candidates from the set of definitionsagf; , top-down elimination from the set of definitionsap,.

Fig. 4.5. The elimination of potential operators in two directionsttbm up and top down

@ (X

bottom up—Elimination

¢ top down—Elimination

@ (..X..}

4.2 Attribute Grammars

We have described tasks to be performed by semantic an@lySisction 4.1. In line with our pre-
sentation so far it would be nice to also have a descriptionhaeism for these tasks, from which
implementations could be generated.

Remember the algorithm for overload resolution in Sectich3} in particular the two passes
bottom-up elimination and top-down elimination. One stéaottom-up elimination at some node
k removes from the seips(k) of potential operators dt all those where the type of thiéh parameter
does not agree with the result type of any potential opeedtoodek.;. Hence, the new set of potential
operators at node is determined based on the set of potential operators ahiltren of k. One step
of top-down elimination at some noderemoves operator candidatestatwhose result type does not
agree with any of the parameter types of paramietéthe operator candidates/atHere, the set of po-
tential operators dt.i is computed based on the set of potential operatdtsHbe overload-resolution
algorithm needs this flow of information in both directions.

An elegant and powerful description mechanism for taslestilese arattribute grammarsThey
extend context-free grammars by associasitigbuteswith the symbols of the underlying context-free
grammar. These attributes are containers for static seeriafarmation. Their values are computed by
computations performed on trees, with computations teangrthe trees as needed.

The set of attributes of a symbal is denoted by4(.X). With each attribute is associated a type
Ta, Which fixes the set of possible values for the instanceseéttribute.

Consider a productiop: Xy — X5 ... X with £ > 0 symbols occurring on the right side. To
tell the different occurrences of symbols in producticapart, we number these from left to right. The
left side nonterminalX, will be denoted byp[0], theith symbolX; on the right side op by p[i] for

122 4 Semantic Analysis

i1 =1,...,k. The attributez of a symbolX has arattribute occurrencet each occurrence of in a
production. The occurrence of an attributat a symbolX; is denoted by/[i].a.

Attributes also havelirections which can be better understood, if we think of productiopliap
cations in parse trees. The attributes of a symbaire eithelinherited or synthesizedThe values of
(instances of) synthesized attributes at a node are cochfnatie (values of attribute instances in) the
subtree at this node. The values of (instances of) inheaititbutes at a node are computed from the
context of the node, see Figure 4.6. All the attribute instsrwith ingoing yellow edges are computed
within the production. These are the occurrences of syitb@sittributes of the left side of the produc-
tion and the occurrences of inherited attributes of thetréidte of productions. Together we call them
defining occurrencesf attributes in this production. All other occurrence dfiatites in the produc-
tion are calledapplied attribute occurrenceg&ach production hasemantic ruleswhich describe how
the values of defining attribute occurrences in the prodaciire computed from the values of other
attribute occurrences of the same production. So, semanés need to be given for each inherited
attribute occurrence on the right side of a production arth sginthesized attribute occurrence on the
left side. The set of inherited and synthesized attributemattribute grammar are denoted byand
S, resp. and the set of inherited and synthesized attribdtasspmbolsX correspondingly byZ (X)
andS(X).

b
00

0x00- 000

T f

Fig. 4.6. An attributed node in the parse tree with its attributed sasors. Instances of inherited attributes are
drawn as boxes to the left of syntactic symbols, instancegrthesized attributes as boxes to the right of symbols.
Red (darker) arrows show the information flow into the prdiiucinstance from the outside, yellow (lighter)
arrows symbolize functional dependences between attrilmstances that are given through the semantic rules
associated with the production.

In our examples we write the semantic rules in ana®IL -like programming language.

PopularL R parsers such asAtc and BsoN offer a restricted attribute mechanism: Each symbol
of the grammar has one associated attribute, and to eacligiiod there is one semantic rule that
describes how the value of the attribute occurrence on thsitie is computed from the values of the
right-side attribute occurrences.

Example 4.2.1 Consider a context-free grammar with the nontermialg’, F' for arithmetic expres-
sions. The set of terminals consists of parentheses, apsrand the symbolar andconst, represent-
ing int variables and constants. The nonterminals have an a#ribut that will hold the trees for the
words that have been derived from them.

The productions of the grammar are extended by semantis asléollows: Different occurrences
of the same symbol are indexed.

Example 4.2.2

4.2 Attribute Grammars 123

pr: E—E+T
E|[0].tree = Plus (E[1].tree, T.tree)
pe: E—T
E.tree = T'.tree
ps: T — TxF
T[0].tree = Mult (T'[1].tree, F.tree)
py: T — F
T.tree = F'.tree
ps: F — const
F.tree = Int (const.val)
pe: F — var
F.tree = Var (var.id)
pr: F—(E)
F.tree = E.tree
O

The trees are built with the constructdtiais, Mult, Int, Var. Further, we assume that the symbaohst
has an attributea/, which will hold the value of the instances odnst, and the symbolar has an
attributeid, which will hold the unique codes for the instances&f 0O

If the semantic rule for a defining attribute occurrence asesttribute occurrence as argumentthere
is afunctional dependendeom the argument attribute-occurrence to the definingpalte occurrence.

Attributes of symbols labeling nodes of parse trees aredaltribute instancesThey exist at
compile time after syntactic analysis has produced theefiees.

The functional dependences between attribute occurretetesmine in which order the attribute
instances at nodes of the parse tree may be evaluated. Angsiofesemantic rules need to be evaluated
before the rules can be applied to compute the value of tleeiassd attribute (instance). There exist
some constraints on the functional dependences to enatrth#iocal semantic rules of the attribute
grammar for the attribute occurrences in the productionsbeacomposed to global computation of
all attribute instances in a parse tree. The values of at&imstances at the individual nodes of the
parse tree are computed by a global algorithm, which is geeérfrom the attribute grammar, and
which at each node adheres to the local semantic rules of the production appplie. The theme of
this chapter is how such an algorithm can be automaticathegeed from a given attribute grammar.

An attribute grammar is imormal formif all defining attribute occurrences in productions only
depend on applied occurrences in the same productionst Expidicitly stated otherwise we assume
that attribute grammars are in normal form.

We have admitted synthesized attributes for terminal sysnicthe grammar. In compiler design,
attribute grammars are used to specify semantic analyisis phase follows lexical and syntactic anal-
ysis. Typical synthesized attributes of terminal symboésvalues of constants, external representations
or unigue encodings of names, and the addresses of stristpes. The values of these attributes are
delivered by the scanner, at least if it is extended by seméntctionality. So, in compilers synthe-
sized attributes of terminal symbols play an important.rAlso inherited attribute instances at the root
of the parse tree have no semantic rules in the grammar towertipeir values. However, the compiler
may have some use for them and therefore will initialize them

4.2.1 The Semantics of an Attribute Grammar

The semantics of an attribute grammar determines for eade et of the underlying context-free
grammar which values the attributes at each nodeshould have.

For each node: in ¢ let symb(n) the symbol of the grammar labeling If symb(n) = X then
n is associated with the attributes (X). The attributen € A(n) of the noden addressed byt.a.
Furthermore we need an operator to navigate from a node &udsessors. Let,,...,n; be the

124 4 Semantic Analysis

sequence of successors of nodén parse tree. n[0] denotes the node itself, andn[i] = n; for
i =1,..., k denotes théthn successor of in the parse tree

If Xo = symb(n) and, if X; = symb(n;) fori = 1,..., k are the labels of the successarsof n
thenXy, — X; ... X} is the production of the context-free grammar that was ag@t node:.. The
semantic rules of this productignprovide the method to compute values of the attributes atdldes
n,ni,...,ng. The semantic rule

plil.a = f(pli1].a1,. .., plir].ar)

for the productiorp becomes the semantic rule
nlil.a = f(nli1).a1,...,nlir).a)

for the noden in the parse tree. We assume that the semantic rules spetEffunctions. Lett be a
parse tree and
V(t) = {n.a | nnodeint,a € A(symb(n))}

be the set of all attribute instancestinThe subseV;, (¢) of inherited attribute instances at the rootl
and of synthesized attribute instances at the leaves deel¢hé set ofnput attribute instancesf ¢.

Assigning values to the input attribute instances and mistéing the semantic rules of the attribute
grammar at all nodes inhproduces a system of equations in the unknowmsthat has for all but the
input attribute instances exactly one equation. AES(¢) this attribute equation system.AES(¢) is
recursive (cyclic) it can have several solutions or no sofutlF AES(¢) is not recursive there exists
for assignment of the input attribute instance exactly one attribute assignt for the parse trees
agreeing on the input attribute instances wittand satisfying all equations. The attribute grammar
is therefore calledvellformed if the system of equation8ES(¢) is not recursive for any parse tree
of the underlying context-free grammar. In this case we @dfie semantics of the attribute grammar
as the function mapping each parse ttesnd each assignmentof the input attribute instances to
an attribute assignment that agrees on these avitind that additionally satisfies all equations of the
systemAES(t).

4.2.2 Some Attribute Grammars

In the following we present some attribute grammars thateseksential subtasks of semantic anal-
ysis. The first attribute grammar shows how types of expoesstan be computed using an attribute
grammar.

Example 4.2.3 (Type checking) The attribute grammat G, beschreibt die type determination for
expressions containing assignments, nullary functioperatorst, —, x, / and variable and constants
of typeint or floatin a C-like programming language with explicit type dectamas for variables. The
attribute grammar has an attributg for the nonterminal symbol&', 7" and F' and for the terminal
symbolconst, which may take valuekt and Float. This grammar can be easily extended to more
general expressions with function application, composetgction in composed values, and pointers.

4.2 Attribute Grammars 125

E—var'=" E
E[1].env = E[0].env
E[0].typ = EI0].env var.id
E[0].ok = letx =var.id
in let 7 = E[0].env
in (7 # error) A (E[1].type C 1)

E— FaopT E—T
E[l]).env = E[0].env T.env = E.env
T.env = E[0].env E.typ = T.typ
E[0].typ = E[1].typ U T.typ E.ok =T.ok

E[0].0k = (E[1].typ C float) A (T.typ C float)

T — T mop F T — F
T[1].env = T[0].env F.env = T.env
F.env T1[0].en T.typ = F.typ
T10].ty 1]. typI_IFtyp T.ok = F.ok

T
[O].ok = (T[l].typ C float) A (F.typ C float)

F — (E) F — const

FE.env = F.env F.typ = const.typ

F.ityp = E.typ F.ok = true

F.ok = FE.ok

F — var F — var ()

F.typ = F.env var.id F.typ = (F.env var.id) ()
F.ok = (F.env var.id # error) F.ok = match F.env var.id

with 7 () — true
| _ —false

The attributeenv of the nonterminalé’, 7" and £ is inherited, all other attributes of grammar ..
are synthesized.

The semantic rules in this grammar are not necesstatil functions. For instance, they are not
total if an identifier is used, but not declared in a programthis case, an entry for this identifier would
be searched for in the symbol takiev, Also, the right side of the semantic rule to the third pracuc
produces the valubnt for the operatof+’ only if the attribute occurrenc®[1].typ and F.typ both
have the valuént. Otherwise it is not defined.

If a semantic rule is undefined for particular arguments ihigsnderstood as returning an error
value. No operator is defined for such an error value. Thsethor value propagates. The compiler
would reject a program with error values in attributesl

We use a convention for writing attribute grammars to redheewvriting effort caused mainly by chain
productions:

If no semantic rule for a defining occurrence is given thefitigfunction as semantic rule is assumFd.

The following examples use this convention, at least faasdl — « X 5 whose right sides contain
only one symbolX whose attributes agree with the ones of the left side

126 4 Semantic Analysis

Example 4.2.4 (Managing Symbol Tables) Attribute grammartA G sqo,.s manages symbol tables for
a fragment of a C-like imperative language with paramesgsrfgocedures. Nonterminals for declara-
tions, statements, blocks, and expressions are assouwitlean with a inherited attributenv that will
contain the actual symbol table.

The redeclaration of an identifier within the same block ibidden while it is allowed in a new
block. To check this a further inherited attributene is used to collect the set of identifiers that are
encountered so far in the actual block. The synthesizeihatitrok: signals whether all used identifiers
are declared and used in a type-correct way.

(decl) — (type) var; (block) — (decl) (block)

(decly.new = (var.id, (type).typ) (decl).env = (block)[0].env
(decly.ok = true (block)[1].same = let (z,_)

n (block
(decl) — void var () { (block) } (block)[1].env = let (z,7T)
ck
2

(decl).new
)[0].same U {x}
(decl).new
J.e
(

(block).same = () n (block)[0].env & {x - 7}

(block).env = (decl).env ® (block)[0].0k = let (z,_) = (decl).new
{var.id — void ()} in if ~(z € (block)[0].same)

(decl).new = (var.id,void ()) then (decl).ok A (block)[1].ok

(decl).ok = (block).ok else false

(stat) — E; (block) — (stat) (block)

E.env = (stat).enw (stat).env = (block)[0].env

(stat).ok = E.ok (block)[1].env = (block)[0].env

(block)[1].same = (block)[0].same

(stat) — { (block) } (block)[0].0k = ((stat).ok A (block)[1].0k)

(block).env = (stat).env (block)

(block).same = ()

(stat).ok = (block).ok (block).ok = true

This grammar only contains productions for the nonternsgaibol(stat). To obtain a complete gram-
mar further productions for expressions like the ones ir34afe needed. For the case that the program-
ming language also contains type declarations anothéntiis required that manages the actual type
environment.

The given rules collect declarations from left to right. §leixcludes the use of a procedwa
before its declaration. This formalizes the scoping ruletfie language, namely that the scope of a
procedure declaration begins at the end of the declarafienvant now to change this scoping rules
to allow the use of procedures starting with the beginninthefblock in which they are declared The
modified attribute grammar reflecting this is callé@;.,p.s . In the attribute grammat G scopes+ the
computation of the attributenv is modified such that all procedures declared in the blockadded
to env already at the beginning of a block. The nontermifidbck) is associated with an additional
synthesized attributgrocs, and the productions for the nontermialock) obtain the additional rules:

4.2 Attribute Grammars 127

(block) — ¢
(block).procs = 0

(block) — (stat) (block)
(block)[0].procs = (block)[1].procs

(block) — (decl) (block)
(block)[0].procs = match (decl).new
with (z,void()) — (block)[1].procs ® {x — void()}
| _ — (block)[1].procs

The procedures collected {hlock).procs are added to the environmelock).env in the productions
that introduce new blocks. The attribute gramrm&¥,..,..+ then has the following semantic rules:

(stat)y — { (block) }
(block).env = (stat).env @& (block).procs

(decly — void var () { (block) }
(block).env = (decl).env & (block).procs

The rest of attribute grammatGs.opes+ agrees with attribute grammalG's.op.s. Note that the new
semantic rules induce an interesting functional dependénicerited attributes of a nonterminal on the
right side of a production depend on synthesized attritoftédse same nonterminal.Cl

Attribute grammars can be used to generate code. The codagon functions as they were described
in Wilhelm/Seidl: Compiler Design—Virtual Machinase recursively defined over the structure of
programs. They use information about the program such agjples of identifiers visible in a program
fragment whose computation can be described by attribaegrars. We now give an example how
a nontrivial subproblem of code generation can be deschilyegh attribute grammar. This is the so-
calledshort-circuit evaluatiorof boolean expressions.

Example 4.2.5 We consider code generation for a virtual machine like theaCikl Wilhelm/Seidl:
Compiler Design—Virtual Machines

The code generated for a boolean expression accordingitiuggtgrammaBoolExpshould have
the following properties:

e the generated code consists only of load-instructions amdiiional jumps. In particular, no
boolean operations are generated.

e Subexpressions are evaluated from left to right.

e Of each subexpression as well of the whole expression oalgrtiallest subexpressions are evalu-
ated that uniquely determine the value of the whole (subisgion. So, each subexpression is left
as soon as its value determines the value of its containipgession.

The following code is generated for the boolean expresgiond) vV —c with the boolean variables b
ande:
load a
jumpf iy jump-on-false
load b
jumpt o jump-on-true
l;: loadc
jumpt I3
l: continuation if the expression evaluatestoe
l3: continuation if the expression evaluatesdie

128 4 Semantic Analysis

The attribute grammaBoolExpgenerates labels for the code for subexpressions, and#ptoats these
labels to atomic subexpressions from which the evaluatiompg to these labels. Each subexpression
E andT receives infsucc the label of the successor if the expression evaluatésdd® and intsucc

the label of the successor if it evaluategtoe. A synthesized attributgrond contains the relation of
the value of the whole (sub)expression to its rightmosttifien

e If jeond has the valuarue for an expression this means that the value of the expressitire
same as the value of its rightmost identifier. This identiBehe last one that is loaded during the
evaluation.

e If jcond has the valudalse the value of expression is the negation of the value of itstnigpst
identifier.

Correspondingly, doad instruction for the last identifier is followed byjampt to the label intsuce,
if jeond = true, and it is followed by gumpf if jcond = false. This selection is performed by the
function:

gencjump (jc, 1) = if jc then (jumptl) else (jumpf)

As a context for boolean expressions we add a production faossided conditional statement.
The labelstsucc and fsuce of the condition quite naturally correspond to the startradses of the
code for thethenand theelseparts of the conditional statements. The code for the cmmdénds in
a conditional jump to thelsepart. It tests the conditiofv for the valuefalse. Therefore the function
gencjump receives—jcond as first parameter. We obtain:

4.3 The Generation of Attribute Evaluators 129

(if _stat) — if (F) (stat) else (stat)

E.tsucc = new()
E.fsucc = new()
(if _stat).code = let t = E.tsucc

inlet e = F.fsucc

in let f = new()

in F.code “gencjump (=FE.jcond,e)”
t: " (stat)[1].code”jump [~

e: "(stat)[2].code”
f:
E - T
E — FEorT
E[1].tsucc = E[0].tsucc T.tsucc = E[0].tsucc
E[1].fsucc = new() T.fsucc = E[0].fsucc
E[0].jcond = T'jcond
E[0].code = lett = E[1].fsucc

in E[1].code"gencjump (E[1].jcond, E[0].tsucc)”

“T.code
T - F
T — Tand F
T[1].tsucc = new() F.tsucc = T'[0].tsucc
T[1].fsuce = T[0].fsucc F.fsucc = T0].fsucc
T10] jCOTLd = F.jcond
T[0].code =let f = T[1].tsucc
in T[1].code” gencjump (—T[1].jcond, T[0].fsucc)”
f: "F.code
F — not I
F[1].tsucc = F[0].fsucc
F[1].fsucc = FI0].tsucc
F[0].code = FI1].code
F[0].jcond = —F[1].jcond
F — var

F.jcond = true
F.code = load var.id

The infix operator © denotes the concatenation of code fragments. This agrimammar is not in
normal form: The semantic rule for the synthesized attehutle of the left sideifstat in the first
production uses the inherited attributescc and fsucc of the nonterminaly on the right side. The
reason is that the two inherited attributes are computeatusifunctionnew() that generated a new
label every time it is called. This way it changes a globakstahich is, puristically seen, not admitted
by the attribute-grammar formalismO

4.3 The Generation of Attribute Evaluators

This section treats attribute evaluation, more precisedydvaluation of attribute instances in parse
trees, even more precisely the generation of the correspgedaluators.

130 4 Semantic Analysis

An attribute grammar defines for each parse tretthe underlying context-free grammar a system
of equationAES(¢). The unknowns in this system of equations are the attrimstiances at the nodes
of ¢t. Let us assume that the attribute grammar is well-formedhisicase the system of equations is
not recursive. Non-recursive systems of equations can lvedby elimination methods. Each elimi-
nation step selects one attribute instance to be evaluatadibhmust only depend on already evaluated
attribute instances. Such an attribute evaluator is pulghamicas it does not exploit any information
about the dependences in the attribute gammar. An evalttetbmakes use of such information is
described in the next section.

4.3.1 Demand-driven Attribute Evaluation

We now describe a first, dynamic attribute evaluator for i@imed attribute grammars, which evalu-
ates attribute instances irdemand-drivenvay.

Demand-driven evaluation means that not all attributeaimsgs will get their values, but attribute
evaluation will be triggered by @alue enquiryfor some attribute instances. This demand-driven eval-
uation is performed by a functiamlve, which is called for a node and one of the attribuiesf the
symbol that labels:.. The evaluation starts by checking whether the demandedua#t instancer.a
has already received its value. If this is the case the fanagturns with the already computed value.
Otherwise the evaluation efa is triggered. This evaluation may in turn demand the evaloaf other
attribute instances, whose evaluation is triggered rélys This strategy has the consequence that for
each attribute instance in the parse tree the right sids eéitnantic rule is evaluated at most once. The
evaluation of attribute instances that are never demarsdeahnpletely avoided.

To realize this idea all attribute instances that are ndialided are set to the valugndef before
the first value enquiry. Each attribute instance initializéth a nonUndef valued is set to the value
Value d. For the navigation in the parse tree we use the postfix apsrid} to go from a node: to
its ith successor. Far = 0 the navigation stays at. Furthermore we need an operafather when
given a node: returns the(n/, j) consisting of the father’ of noden and the information in which
direction, seen from/, to findn. This latter information says which child the argument nisdef its
fathern’. To implement the functiosolve for this recursive evaluation, we need a functéoal. If p is
the production that was applied at nadeand if

f(plit).ax, ..., pli].ar)

is the right side of the semantic rule for the attribute ooencep[i].a, eval n (i, a) returns the value of
f,» where for each demanded attribute instance the funstion is called, that is,

eval n (¢,a) = f(solve n[i1] a1, ...,solve n[i,] a,)
In a simultaneous recursion with the functiernl the functionsolve is implemented by:

solve n a = match n.a
with Valued — d
| Undef — if b€ S(symb(n))
then letd=-evaln (0,a)
inlet = n.a «— Valued
ind
else let (n,j') = father n
in let d’ = eval v’ (j',a)
inlet = n.a « Value d’
ind
The functionsolve checks, whether the attribute instance in the parse tree already has a value. If

this is the caseolve returns this value. If the attribute instanee: does not yet have a value,a is
labeled withUndef. In this case the semantic rule fora is searched for.

4.3 The Generation of Attribute Evaluators 131

If a is a synthesized attribute of the symbol at nadé¢here is a semantic rule to the productjon
at noden. The right sidef of this rule is modified such that it does not directly attertgpaccess its
argument attribute instances, but instead calls the fonssive recursively for these instances for node
n. If a valued for the attribute instance.a is obtained, it is assigned to the attribute instaneceand
in addition returned as result.

If a is an inherited attribute of the symbol at nodethe semantic rule fon.a is not supplied by
n, but by the father of.. Letn’ be the father ofi andn the j'th child of »’. The semantic rule for the
attribute occurrencg[j'].a is chosen if the productiopl was applied at node'. Its right side is again
modified in the same way such that before any access to a@#nfiues the functiosolve is called for
the noden’. The computed value is stored in the attribute instaneeand returned as result.

If the attribute grammar is well-formed, the demand-driegaluator computes for each parse tree
and for each attribute instance always the correct valuthelfattribute grammar is not well-formed
there exist parse trees for which the associated systenuatiegs is recursive. ifis such a parse tree,
there is int a noden and an attribute; at n such that..a depends, directly are indirectly, on itself.
The callsolve n a might then possibly not terminate. This nontermination lbaravoided by labeling
attribute instances witfialled if their evaluation has started, but not yet terminated. flinetionsolve
would terminate evaluation when it meets such an attrimgtance labeled witQalled. solve would
return an error value in this case, see Exeree

4.3.2 Static Precomputationsfor Attribute Evaluators

Dynamic attribute evaluation do not exploit informatioroabthe attribute grammar to improve the ef-
ficiency of attribute evaluation. More efficient attribut@kiation methods is possible using knowledge
of the functional dependences in productions. An attrilmeteurrence|i].a in productionp function-
ally depends on an occurrengg].b if p[j].b is an argument for the semantic rule fgi].a.

These production-local dependences determine the depesslm the system of equatidiS(¢).
The evaluation method that we describe now analyzes thdifurat dependences between attribute
occurrences in productions to derive information aboubglalependences and a visit sequence for
the attribute occurrence of each production that guararttest an attribute instance is only visited
when the argument instances for the corresponding senratdiare already evaluated. Consider again
Figure 4.6. Attribute evaluation requires a cooperatiothef computations at a nodeand and its
successorsy, . . ., ng, and those in the context of this production instance. Allooaputation of an
instance of a synthesized attribute at a nadabeled with X, provides an attribute value to be used
by local computations in the upper contextofThe computation of the value of an inherited attribute
instance at the same noddakes place above and provides a new attribute value available for local
computations below according to the semantic rules for the production X, — X5 ... Xj. To
schedule this interaction of computatiogi®bal functional dependences between attribute instances
need to be derive from production-local dependences. \WWedate some notions:

For a productiom let V' (p) be the set of attribute occurrenceirmhe semantic rules to production
p define a relatioDp(p) C V(p) x V(p) of production-locafunctional dependences on the B&p).
The relationDp(p) contains a paitp[j].b, p[i].a) of attribute occurrences if and only;if;].b occurs as
an argument in a semantic rule fgg].a.

samé env @(

e _stat) ok

Fig. 4.7. The production-local dependence relation to productionk — stat block in AG scopes

132 4 Semantic Analysis

'samel env (block| ok

[new same env | ok

Fig. 4.8. The production-local dependence relation to productionk — decl block in AG scopes-

@

@ om0 ()

Fig. 4.9. Die production-local dependence relation zur producfion> 7' mop F' ausAG iypes

var

Fig. 4.10. The production-local dependence relations of the prodostf” — const andF' — var in AG ypes.

Example 4.3.1 (Continuation of Examples 4.2.4 and 4.2.3) To increase readability we represent attri-
bute-dependence relations always together with the widgrbyntactic structure, that is, the pro-
duction or the parse tree. The dependence relations for ribduptionsblock — stat block and
block — decl block in AG scopes are shown in Figure 4.7 and 4.8. The production-local depeoel
relations for attribute grammat G, are all very simple: There are dependences between the oc-
currence of the inherited attributev on the left side and the inherited occurrence of attrilzute on

the right side and between the synthesized attribtgtesndop on the right side to the synthesized at-
tribute typ on the left side (see Figure 4.9). Only in production- var there is a dependence between
the attributes:nv andtyp of nonterminalF’ (see Figure 4.10). O

In attribute grammars in normal form the arguments of seimantes for defining occurrences are
always applied attribute occurrences. Therefore the pathk production-local dependence relations
have length 1, and there exist no cycles of the fdpfi].a, p[i].a). The adherence to normal form
simplifies some considerations. If not explicitly said othise we assume in the following that all
attribute grammars are in normal form.

4.3 The Generation of Attribute Evaluators 133

The production-local dependences between attribute omeee in productions induce dependences
between attribute instances in the parse trees of the grarhgta be a tree of the context-free gram-
mar underlying an attribute grammar. Timelividual dependence relation on the 3étt) of attribute
instances of, Dt(t), is obtained byinstantiatingthe production-local dependence relations of pro-
ductions applied int. For each node in ¢ at which productiorp has been applied the relatidp(¢)
consists of exactly the paifs[j].b, n[i].a) with (p[4].b, p[i].a) € Dp(p).

[oK

(oo [

<

(ype][p

int

samélen
ENEET
e

Fig. 411. The individual dependence relation for the parse tre¢ tot z; = = 1; } according to attribute
grammarAG scopes

Example 4.3.2 (Continuation of Example 4.2.4) The dependence relation to the parse tree of state-
ment{ int z; x = 1; } according to attribute gramma¥G s.,pes iS shown in Figure 4.11. For sim-
plicity we assumed that the nontermirngbe directly derives the base typet, and that nonterminal

for expressions directly derives the terminahst. O

A relation R on a setA is calledcyclic if its transitive closure containg, a). Otherwise we call the
relation R acyclic. A attribute grammar is calledon-circular, if all individual dependence relations of
the attribute grammar are acyclic. An individual depen@amtationDt(t) is acyclic if and only if the
system of equationAES(¢) that was introduced in Section 4.2.1 is not recursive. Bite grammars
that satisfied the latter condition were called well-formBldus, an attribute grammar is well-formed if
and only it is well-formed.

Consider a parse treawith root labelX as in Figure 4.12. The instances of the inherited attributes
at the root are viewed as inputtpand the instances of the synthesized attributes at theasootitput
of t. The instance of at the root (transitively) depends only on the instanceatfthe root. If the value
of the instance of is known an attribute evaluator can descend treod return with the value for the
instance ofd since there are no other dependences of instances externiat do not pass through
c. The instance o at the root depends on the instances @ihdb at the root. When both values are
available the evaluation of the instancecafan be triggered. This situation is described byltveer
characteristic dependence relatiof X induced byt. This is a relation over the sgt(X).

134 4 Semantic Analysis

E@EE [o] 2] [e] XD [a] [e]

/N
/UEN

Fig. 4.12. Attribute dependences in a parse treeXoand the induced lower characteristic dependence relation

Let ¢t be a parse tree for a symbal with root n. The lower characteristic dependence relation
R.(X) for X induced byt consists of all pairga,b) of attributes for which the paifn.a, n.b) of
attribute instances at the rootof ¢ is in the transitive closure of the individual dependendatien
Dt(t). In particular is

R:i(X) CI(X) x S(X).

samé env @

Fig. 4.13. Lower characteristic dependence relation#ick

Example 4.3.3 (Continuation of Example 4.3.2) The lower characteristic dependence relation for the
nonterminalblock induced by the subtree of the rootiofvith root block in Example 4.3.2 is shown in
Figure 4.13. O

Lemma 4.1. For an attribute grammar the following statements are edgn:

1. For each parse treewith root label X, the lower characteristic dependence relatiiX) is
acyclic;
2. For each parse treghe dependence relatidnt(t) is acyclic.

While the set of dependence relations of an attribute granignia general infinite the set dbwer
dependence relations is always finite since there is one mlation per nonterminal. One can thus
compute the set of all lower dependence relations and theidelevhether the dependence relations
Dt(t) for each parse trefeis acyclic, and whether the demand-driven attribute evaheaways termi-
nates.

Let X be a symbol with a setl of attributes. For a relatioR C .42 andi > 0 and a productiop
we define the relatioR®[p, i| as

Rlp,i] = {(pli].a, p[i].b) | (a,b) € R}

Consider a productiop: X — X; ... X}. For a binary relatior C V' (p)? over the set of attribute
occurrence of productiomwe define the following two operations

St =U{97|j=>1} (transitive closure)
m:(S) = {(a,b) | (p[i].a,pli].b) € S} (projection)

Projection allows extracting the induced dependencesdeatihe attributes of a symbol occurring in a
productiornp out of a dependence relation for attribute occurrences\ivie can thereby define the effect

4.3 The Generation of Attribute Evaluators 135

[p]* of the application of productiomon the dependence relatioRs, . . . , R;, for symbol occurrences
p[i] on the right side op by:

[Pl (R, R) = mo((Dp(p) U Ri[p, 1] U ... U Ri[p, k) ™)

The operatiorfp]* takes the local dependence relation of produgtiand adds the instantiated depen-
dence relations for the symbol occurrences of the right Sitie transitive closure of this relation is
computed and projected to the attributes of the left-sideeroinal ofp. If productionp is applied at
the root of a parse treg¢sand if the die relation&7, . . ., U, are the lower dependence relations for the
subtrees under the root bthe lower characteristic dependence relation fisrobtained by

Ut(X) = Hp]]ﬁ(Ul, ,Uk)

The setd/(X), X € V of all lower dependence relations for nonterminal symbBolesult as the least
solution of the system of equations

@) Ua) ={0}, a€Vr
UX) = {[p]*(Uy,...,U) |p: X = X1... X € PU; €cUX)}, X €Vy

Here,Vp, Vv, and P are the sets of terminal and nonterminal symbols, and ptaxhscof the under-
lying context-free grammar. Each right side of these eguatismonotonicin each unknow{(X;)

on which it depends. The set of all transitive binary relagiover a finite set is finite. Therefore also
the set of its subsets is finite. The least solution of thisesysof equations, i.e., the set of all lower
dependence relations for eakhcan be determined by iteration. The resulting relationsbeachecked
for cyclic dependences. Hence the non-circularity profienattribute grammars can be decided.

Theorem 4.3.1 Itis decidable whether an attribute grammar is well-formed

To decide well-formedness all lower dependence relatibtiseoattribute grammar are computed. This
set is finite, but it can grow exponentially in the number dfilatites. The check for non-circularity is
thus only practically feasible if the number of attributesimall, or if the symbols have only few lower
dependence relations. In general the exponential effamavoidable since the problem to check for
non-circularity of an attribute grammarksXPTIMEcomplete.

In many attribute grammars a nontermidélmay have several lower characteristic dependence
relations, but these are all contained in one common tigesityclic dependence relation.

Example 4.3.4 Consider the attribute grammafG s.opes in Example 4.2.4. For nonterminalock
there are the following lower characteristic dependenietions:

(1) 0

(2) {(same, ok)}

(3) {(env,ok)}

(4) {(same, ok), (env, ok)}

The first three dependence relations are all contained ifotivéh. O

To compute for each symbdl a transitive relation that contains all lower charactaridependences
for X we set up the following system of equations over transittations:

(R) Ra) =0, a € Vp
R(X) = [H{P]F(R(X1),...,R(Xp) |p: X - X1...X, €P},XecVy

The partial order on transitive relations is the subsetimiaC_. Note that the least upper bound of the
transitive relations? € S is not just their union. Instead we have:

s =WUs»

136 4 Semantic Analysis

i.e., following the union of the relations the transitiveslire must be computed. For each produgction
the operatiorfp]* is monotonic in each of their arguments. Therefore the aystieequations possesses
a least solution. Since there are only finitely many travsitielations over the set of attributes this
solution can be determined by iteration. L&tX), X € V, andR(X), X € V, be the least solutions
of the systems of equatiori&) and(R). By induction over the iterations of the fixed-point algbnit
One can prove that for alk € V" holds

R(X) 2 [Ju(x)

We conclude that all characteristic lower dependenceioelabf the attribute grammar are acyclic if
all relationsR(X), X € V, are acyclic. An attribute grammar where all relatiddgX), X € V, are
acyclic is calledabsolutely non-circularEach absolutely non-circular attribute grammar is thgedo
well-formed. This means that for absolutely non-circulénilaute grammars the algorithm for demand-
driven attribute evaluation always terminates. By solthmgsystem of equatiori®) one has identified
a polynomial criterion to guarantee the applicability ofrend-driven attribute evaluation.

Similar to thelower characteristic dependence relations of a sym¥ahe uppercharacteristic
dependence relation fof can be defined. It is derived from attribute dependences péupee frag-
ments forX. Remember: The upper tree fragment of a parsettr@e: is the tree that one obtains
by replacing the subtree atby the node:. This upper tree fragment is denotedfy.. Let D¢(t\n)
be the individual dependence relation of the upper treeieadg, i.e., the set of all paifs;.a, ns, b)
of the individual dependence relatid (¢) for which n; as well asn lie in the upper tree fragment
t\n. The upper characteristic dependence relafipn (X) for X at noden in ¢ consists of all pairs
(a,b) € A(X) x A(X), for which the pair(n.a,n.b) lies in the transitive closure abt(t\n) (see
Figure 4.14). One can construct a system of equations oteotgansitive relations for the sé(X)
of all possible upper characteristic dependence relatibegmbol X (see Exercis@?).

L] [o] GO L] [a] [€]

L] [2] GO [e] [a] [e]

Fig. 4.14. Attribute dependences in an upper tree fragmenff@nd the induced upper characteristic dependence
relation

4.3.3 Visit-Oriented Attribute Evaluation

The advantage of a statically generated attribute evaluater the demand-driven dynamic evaluator
of the previous section is that the behavior of the evaluat@ach node is already statically fixed at
generation time. No test at each attribute instance at atratutime whether the instance is already
evaluated is needed. The largest class of attribute gramfoamwhich we describe the generation

4.3 The Generation of Attribute Evaluators 137

of attribute evaluators is the class ledrdered or simple-multi-visitattribute grammars. An attribute
grammar is called-ordered if there exists a functior¥ that map each symboX to a total order
T(X) C A? onthe setd of attributes ofX that is compatible with all productions. This means that for
each productiop : Xy — X; ... X} of the underlying grammar the relation

Dz (p) = (Dp(p) UT (Xo)[p,0]U... UT (X)[p, k)"
is acyclic. This property is equivalent to the property that
T(X;) = m((Dp(p) U T (Xo)[p, 0] U ... UT (Xi)[p, k)T)
holds for alli. Therefore holds in particular:
T(Xo) 2 [PI(T (X1), ..., T (X))

By comparing this inequality with the equation for the unlumaX in the system of equatiof®) in
the last section, we can conclude that the total ofeX) contains the dependence relatiBiiXy).
Since7 (X)) is a total order and is therefore acyclic the attribute gramis absolutely noncircular,
where all local lower dependence relationsXat are contained ir¥ (X,). In analogy, one can show
that7 (X,) contains alupperdependence relations &.

Example 4.3.5 (Continuation of Example 4.2.4) In the attribute grammat G ;.. the following to-
tal orders on the sets of attributes offer themselves fosyimebolsstat, block, decl, E andvar:

stat || env — ok
block||same — env — ok
decl || new

E env — ok

var id

O

Let Br(X) € A(X)* be the sequence of the attributes Xfaccording to the total ordef (X).
This linear sequence can be factored into subsequenceleftad and purely synthesized attributes.
In our example this factorization is for all considered sysbvery simple: All inherited attributes
occur before all synthesized attributes. In general somerited attributes can depend on synthesized
attributes. We then obtain a factorization:

Br(X)=1Ix15x1---IxrySxrx

wherelx,; € Z(X)* andSx,; € S(X)* holds for alli = 1,...,rx and furthermordx ; # ¢ for
1=2,...,rxandSx,; #efori=1,...,rx — 1.

Intuitively, this factorization of the sequené®- (X)) means That the synthesized attributes at each
node of a parse tree labeled wikhcan be evaluated in at mast visits; at the first visit of the node,
coming from the parent node, the values of the inheritedbates inlx ; are available, at the return
to the parent node, the values of the synthesized attrifiit€s ; are evaluated. Correspondingly, at
the sth visit of the node, the values of the inherited attributesy ; ... Ix,; are available, and the
synthesized attributes ifix ; are computed. A subsequenbe;Sx ; of Br(X) is called avisit of X
To determine which evaluations may be performed duringttineisit at a node: and at the successors
of the noden, one considers the dependence relatidn(p) for the productionXy — X ... X
that is applied at. Since the relatioDr(p) is acyclicDr(p) can be arranged into a linear order. In
our case we chose the ordBr-(p), which can be factorized intaisits Altogether we obtain for the
relation D (p) a visit sequence:

Br(p) = Bra(p) ... Br.rx, (D)

The ith subsequenc®r ;(p) describes what happens during thie visit of a noden at which the
productionp : Xg — X7 ... X} has been applied. For each occurrence of inherited atskoftthe

138 4 Semantic Analysis

X; (j > 0) in the subsequence, the corresponding attribute instaareecomputed one after the other.
After the computation of the listed inherited attributetarsces of thé’th visit of the jth successor this
successor is recursively visited to determine the valud#isseo$ynthesized attributes, associated with the
+'th visit. When the values of the synthesized attributes Icfuacessors are available that are directly
or indirectly needed for th computation of the synthesizgdbaites of theith visit of the left sideX

the values of these synthesized attributes are computed.

To describe the subsequenBe ;(p) in an elegant way we introduce the following abbreviations.
Letw = a; ...a; be a sequence of attributes of the nontermiXal p[j].w = p[j].a1 ... p[j].a; shall
denote the associated sequence of attribute ccurrenpe$liei'th visit I, i Sx, + of the jth symbol
of the productiorp is denoted by the sequengf].(Ix; i Sx,). The sequenc8r ;(p), interpreted
as a sequence of attribute occurrences imas then the form:

Bri(p) = pl0].Ix,:
p[jl]'(Ile-,il Sle-,il)

p[j’r]'(IXjryir SXjT-,ir)
p[0].Sx,,i

for an appropriate sequence of pafys, i1), ..., (j, ir). It consists of the visits of the nonterminal
occurrences(;, , ..., X, of the right side of productiop that are embedded in thith visit of the left
side ofp.

Let p be a production and (p[ji1].a1,. .., p[j-]-a,) be the right side of the semantic rule for the
attribute occurrencg[j].a for a total functionf. For a node: in the parse tree at which productipn
has been applied, we define

eval, j o n = f(n[ji].a1,...,n[j].a)
The functionseval,, ; , are used to generate a functissive,, ; from theith subsequenc®; ;(p) of
productionp:
solve,; n = forall (a € Ix;, i)
nlji].a < evaly, j, o 1;
visit;, n[ji1];
forall (a € Ix; ,)
nljrl.a «— evaly, ; o n;
visit;, n[j.];
forall (a € Sx, i)

n.a < evaly 0.4 1;

Example 4.3.6 (Continuation of Example 4.2.4) The production-local dependence relation for the
productionblock — decl block is obtained from the relation in Figure 4.8 by associatiregtttal order
on the attribute occurrences with the symbols. Altogetthés,relation is embedded into the following
total order:
block[0].same — block[0].env —
decl.new —
block[1].same — block[1].env — block[1].ok —

block[0].0k

According to this total order, the evaluator first descemasthe subtree for the nonterminédcl to
determine the value of the attributew. Thereby the inherited attributes of the nontermitiatk
don the right side of the production can be computed. A deso@nthe subtree for this nonterminal
permits to compute the value of the synthesized attribéitef this nonterminal. After this, all values
are available that are needed to compute the value of theessined attributek on the left side of the
production. O

4.3 The Generation of Attribute Evaluators 139

The evaluation orders wisit; are chosen in such a way that the value of each attributenicestd;j’].b
will be computed before any attempt to read its value. Thetionssolve, ; are simultaneously recur-
sive with themselves and with the functiovisit;. For a node: let get_prod n be the production that
was applied at. or Null if n is a leaf that is labeled with a terminal symbolconf py,...,p, is a
sequence of the productions of the grammar, Then the fungti; is given by:

visit; n = match get_prod n
with Null — ()

| p1 — solve,, in

| pm — solve,, ;n

For a node: the functionvisit; checks wether is a leaf or wether it was generated by the application of
a production. Ifn is a leaf the evaluator doesn’t need to do anything, if werasstihat the synthesized
attributes of the leaves were properly initialized. Thelestor recognizes that is a leaf if the call
get_prod n returns the valu@lull. If » is not a leaf the calget_prod n returns the productiop; atn.
In this case thefunctiosolve, . ; is called forn.

Let S be the start symbol of the context-free grammar underlyegattribute grammar. I§ has
no inherited attributes theB7 (X) consists of one order of only synthesized attributes, whinkican
evaluate in a single visit. The evaluation of all attributstances in a parse treevith rootng for the
start symbolS is then performed by the callsit; ng.

The evaluator just presented can be generated in polyntimiaffrom the attribute grammar together
with the total order§ (X), X € V. Not every attribute grammar possess such a system corepatil
orders. The question wether an attribute grammasaitiributed is certainly inVP, since total orders
T(X),X €V, can be guessed and then checked for compatibility in pahyaltime. A significantly
better algorithm is not known. This problem is not onlyNi®, but it is NP complete.

In practice one will therefore use only a subclass of thelered attribute grammars where a simple
method delivers compatible total ordef$X), X € V. The starting point for the construction is the
system of equations:

(R R(X) = | | {m((Dp(p) UR'(Xo)[p, 0] U... UR'(X)[p, k])F) |
p:XoﬂXl...XkEP, X:Xz}7 XeV

over thetransitiverelations on attributes, ordered by the subset relatioBear in mind that the least
upper bound of transitive relatiotds € S is given by:

s = Usr*

The least solution of the system of equatid®’) exists since the operators on the right side of the
equations are monotonic. The least solution can be detethby the iterative method that we used
in Chapter 3.2.5 for the computation of tfiest,sets. Termination is guaranteed since the number of
possible transitive relations is finite.

LetR'(X), for X € V be the least solution of the system of equations. Each sy&teXi), X € V,
of compatibletotal orders is a solution of the system of equati¢®s). ThereforeR'(X) C T (X)
holds for all symbolsX € V. If there exists such a systef(X), X € V, of compatible total orders
the relationsR’ (X)) are all acyclic. The relatiori®’(X) are therefore a good starting point to construct
total orders7 (X).

This construction is done in a way that for eakha sequence with a minimal number of visits is
obtained. For a symbot with A(X) # 0 a sequencé, S ... I,.S, is computed, wheré; andS; are
sequences of inherited and synthesized attributes, riespe@ll already listed attributes are collected
in a setD, which is initialized with the empty set. Let us assumg,Ss,...1;_1,S;_1 are already
computed, and would contain all attributes that occur in these sequeriaes.steps are executed:

140 4 Semantic Analysis

1. First, a maximally large set @fheritedattributes ofX is determined that are not il, and which
only depend on each other or on attribute€inThis set is topologically sorted, delivering some
sequencéd;. This set is added t®.

2. Next, a maximally large set afynthesizedttributes is determined that are not/in and that only
depend on each other or on attributesZin This set is added t®, and a topologically sorted
sequence is produced 8s

This procedure is iterated producing more subsequehg&egsintil all attributes are listed, that is, until
D is equal to the whole set(X) of attributes of the nontermind .

Let 7'(X), X € V, be total orders on the attributes of the symbolsXothat are computed this way.
We call the attribute grammarderedif the total ordesT’ (X), X € V, are already compatible, that is,
satisfy the system of equatio&’). In this method the relatiorR’(X) are expendedne by ondo
total orders, without checking wether the added artificegpehdences generate cycles in the produc-
tions. The polynomial complexity of the construction wasréfore achieved with a restriction of the
expressivity of the accepted attribute grammars.

In our examples 4.2.4, 4.2.3 and 4.2.5 in Section 4.2.batwievaluators are generated by our method
that visit each node of a parse tree exactly once. Not alltigadly relevant attribute grammars have
so simple evaluators. An attribute grammar to compute a symalble for Ava, for instance, must
visit the body of a class several times becausexia Jor methods need not be declared ifoawvard
declaration, as is the case for functions in C.a&) method that is used in the body of another method,
although it is declared only later. A similar problem occirsgunctional languages such as@®wmL,
when simultaneous recursive functions are introducedEseecise??).

4.3.4 Parser-directed Attribute Evaluation

In this section we consider some classes of attribute grasithat are strongly restricted in the types of
attribute dependences they admit, but quite useful in fwecthe introductory example 4.2.1 belongs
to one of these classes. For attribute grammars in thesgeslaattribute evaluation can be performed
in parallel to syntax analysis and directed by the parstibates values are administered in a stack-
like fashion either on a dedicated attribute stack or togretVith the parser states on the parse stack.
In any case, attribute values are addressed using stadtiveehddresses such that an efficient access
is possible. The construction of the parse tree, at leash&purpose of attribute evaluation, is unnec-
essary. attributes-grammars from these classes aredheirferesting for the compilation of simple
languages by efficient compilers.

Since attribute evaluation shall be parser directed theegabf synthesized attributes at terminal
symbols need to be obtained by the scanner when the symbadséeg on to the parser.

L attributesd Grammars

All parsers that we consider as possibly directing attaleitaluation process their input from left to
right. This suggests that attribute dependences going fight to left are not acceptable. The first
grammar class introducef ,attributed grammars, excludes exactly such dependenieissclass prop-
erly contains all classes subject to parser-directedbatti evaluation. It consists of those attribute
grammars in normal form where the attribute instances ih @acse tree can be evaluated in one left
to right traversal of the parse tree. Formally we call artaite grammat. attributed (abbreviated an
LAG), if for each productionp : X, — X; ... X} of the underlying grammar the occurrend¢|.b

of an inherited attribute only depends on attribute ocewresp|i].a with ¢ < j. Attribute evaluation in
one left to right traversal can be performed using the allgoriof Section 4.3.3, which visits each node
in the parse tree only once and visits the children of a noddiixed left to right oder. For a production
p: Xo — Xi1...X; afunctiorsolve, is generated that is defined by:

4.3 The Generation of Attribute Evaluators 141

solve, n = forall (a € Ix,)
n[l].a «— eval, 1,4 n;
visit n[1];

forall (a € Ix,)

nlk].a «— eval, i o 1;
visit n[k];
forall (a € Sx,)

n.a < evaly g 4 1;

Herelx andSx are the sets of inherited and synthesized attributes of sytkiband the expression
eval,, ; . n delivers the value of the right side of the semantic rule fierattribute instance[j].a. The
visit of a noden is realized by the functionisit:

visit n = match get_prod n
with Null — ()

| p1 — solve, n

| pm — solve,, n

Again functionget_prod n returns the production that was applied at nad@r Null if n is a leaf).
The attribute grammarg Gscopes, AGypes aNd A G001 Of Examples 4.2.4, 4.2.3 and 4.2.5 arefall
attributed, where the last one is not in normal form.

LL Attributed Grammars

Let us consider the actions that are necessary for a parsetet! attribute evaluation:

e When reading a terminal symb@l Receiving the synthesized attributesudfom the scanner;
e When expanding a nontermin&l: Evaluation of the inherited attributes af;
e When reducing toX: Evaluation of the synthesized attributes)of

An LL(k) parser as it was described in the chapter on syntax analsiigger these actions at the
reading of a terminal symbol, at expansion, and at reductiespectively. An attribute grammar in
normal form is called.L attributed if

e itis L attributed, and
e the underlying context-free grammar is B (k)-grammar (for somé > 1).

The property of an attribute grammar to bé, attributed means that syntax analysis can be per-
formed by anl L parser, and that whenever thé parser expands a nonterminal, all arguments for its
inherited attributes have already been computed, or atdeasd have been computed.

In Chapter 3.3 we described how to construct a parser to agsiid (k) grammar. This parser
administered item§4 — «.] on its stack, where the dot in the item represented that theopthe
input that was derived from was already processed. We now extend this pushdown autorsath
that it manages a second stack, #tgibute stackwhose frames are pointed to by pointers associated
with items on the parse stack. The frame for the ifeln— «.3] contains the values of the inherited
attributes of the left sidel and the values of the synthesized attributes of the symbails i

Figure 4.15 visualizes the actions of thé parser-directed attribute evaluation.

e An expandtransition for symbolB, pushing one of its alternativds — ~ onto the parse stack,
creates a new frame for the values of the inherited attrébofethe left sideB, computes their
values by the associated semantic rules into this frame.

142 4 Semantic Analysis

e A shift transition under a terminal symba| moving the dot over the, extends the frame with
space for the values of the synthesized attributes, obtains their values from the scanner, and
stores these on the attribute stack.

e A reducetransition assumes a complete ité® — ~.] on top of the parse stack and the values
of the synthesized attributes gfavailable in the associated frame. The values of the syiztes
attributes of the left sidé? are computed according to the semantic rules and storee ifrdme
for B pointed to by the itemiA — «.B/]. The complete iteniB — ~.] is removed from the parse
stack, and its frame is removed from the attribute stack.didién [A — «.Bg] is moved over the
B.

Expansion of a nonterminal B

vorher nachher
B— .y |—> I(B)
A— a.Bf > Z(A)| S(a) A— aBf — Z(A) | S(o)

Reading a terminal symbol a
vorher nachher

A— aaf | Z(A)] S(a) A— aaB —= I(A) | S(e) | S(a) |

Reduction accordingto B — ~
vorher nachher

B—~v. +——={ZI(B)| S(v)
A= a.BB | Z(A) | S(a) A—aB.p | I(A)] S(a)[5(B) |

Fig. 4.15. Actions of LL parser-directed attribute evaluation, whéiel) andS(«) denote the sequences of the
values of the inherited attributes of a symbbbnd of the synthesized attributes of the symbola,iresp.

The attribute grammar$ G ;... andA Gy, are bothl attributed. However, both are nbt. attributed.

In both cases the underlying underlying context-free gramisileft recursive and therefore nbL (k)

for any k. For the attribute grammat G,,,; one can show that there exists hé attributed grammar
that solves this code-generation problem in this way, gdiy propagation of two jump targets to each
subexpression.

LR Attributed Grammars

We now present a method by which &R parser can direct the evaluation of attributes.IAR parser
administers states on its stack. States consists of setsna$,i possibly extended by lookahead sets.
Each such state is associated with an attribute franS¢q). The attribute frame of the initial state is
empty. For any other state & {qo, f} with entry symbolX The frameS(q) contains the values of
the synthesized attributes of the symbolWe extend the. R parser with a (global) attribute franig
Which holds the value of each inherited attribtter | if the value of the attributegis not available.
Initially the global attribute fram& contains the values of the inherited attributes of the startbol.

4.3 The Generation of Attribute Evaluators 143

The values of the synthesized attributes of a terminal syrateomade available by the scanner.
Two problems need to be solved if the values of the attribigethe attribute frameS(q) of a statey
are computed:

e The semantic rule needs to be identified by which the at&ilatues should be evaluated.
e The values of the attribute occurrences that are argumétite gemantic rule need to accessed by
static addresses.

The values of the synthesized attributes of a nontermifjatan be computed when theR parser
makes a reduce transition: The production X, — X; ... X} is known by which the reduction to
X is done. To compute a synthesized attributd X, the semantic rule for the attribute occurrence
p[0].b of this production is used. Before the reduction a sequefige. . ., g, of states is on top of
the parse stack, whetg, .. ., gx have entry symbolX, ..., X} of the right side of. Let us assume
the values for the attribute frameé¥q), ..., S(qx) were already computed. The semantic rule for a
synthesized attribute of, can be applied by accessing the values for the occurresf@esof inherited
attributes of the left sid&, in Z and the values for occurrencglg].b of synthesized attributes of;
of the right side inS(g;). Before thereducetransition, the values of the synthesized attributeX of
can be computed for the state= §(¢’, Xo) that is entered undex). Still unsolved is the question how
the values of the inherited attributes.®f, can be determined.

In the case that there are no inherited attributes, we ajreade a method for attribute evaluation.
An attribute grammar is callefl attributed if it has only synthesized attributes. Example 4.2.1 issuc
a grammar. Despite the restriction to have only synthesi#teithutes once could describe how trees for
expressions are constructed. In general, the computdtgnmoe semantic value can be specified by an
S-grammar. This mechanism is offered by parser generatohsasiMcc or BiIsoN. EachS attributed
grammar is alsd. attributed. If an. R grammar isS attributed, the attribute frames of the states can be
computed on a stack, in particular the values of synthesiteihutes of the start symbol.

Attribute grammars with synthesized attributes alone aterpressive enough for more challeng-
ing tasks. Even the computation of types of expressiontvel® a symbol tablenvin Example 4.2.3
requires an inherited attribute, which is passed down tiheeptaee. Our goal therefore is to extend the
approach forS attributed grammars to deal with inherited attributes. ThHe parser does in general
not know the upper tree fragment, in which the transportp&th inherited attribute values lie. If a
grammar is left recursive the application of an arbitraryniyer of semantic rules may be required to
compute the value of an inherited attribute. On the othedhi&iis helpful that often the values of inher-
ited attributes passed down unchanged through the paeseltnes is the case in the attribute grammar
AGypes Of Example 4.2.3, which computes the type of an expressiowhich the value of the at-
tribute env is copied from the left side of productions in attributested same name to occurrences of
nonterminals on the right side. This can be observed in priatublock — stat block of the attribute
grammarA G scopes Of Example 4.2.4, in which the inherited attributene of the left side is copied to
an attribute of the same name of the nonterminal occurréfacé of the right side, and the inherited
attributeenv of the left side is copied to attributes of the same name atemorinal occurrences of the
right side.

Formally we call an occurrengé;].b of an inherited attributé at thejth symbol of a production
P: Xy — X;i... X copyingif there exists an < j, such that the following holds:

1. p[j].b = pli].b, and
2. pli].bis the last occurrence of the attribiteeforep[j].b, thatis,b ¢ A(X;) foralli < i’ < j.

In this sense all occurrences of the inherited attributeson the right side of the attribute grammar
AGypes are copying. The same holds for the occurrences of the ildesitributesame andenv of
the attribute grammad G s.opes iN the productiorblock — stat block.

Let us assume for a moment that all occurrences of inherttatwtes in right sides were copying.
This means that the values of inherited attributes do nelwange. If the global attribute frame
contains the right value of an inherited attribute, thissideneed to be changed.

Not all occurrences of inheritedr attributes of anattributed grammar are in general copying.
For a noncopying occurrengg;j].b of an inherited attributé the attribute evaluator needs to know
the productiorp : Xo — X ... X and the positiory in the right side ofp, to select the correct

144 4 Semantic Analysis

semantic rule for the attribute occurrence. We use a trigkctmmplish this. A new nonterminai, ; is
introduced with the only productiaN,, ; — e. This nonterminalV,, ; is inserted before the symbal;

in the right side ofp. The nonterminal symbaV,, ; is associated with all inherited attributesf X ;

that are noncopying ip. Each attributé of IV,, ; gets a semantic rules that computes the same value as
the semantic rule fop[;].b.

Example 4.3.7 Consider the productioblock — decl block of the attribute gramman G scopes Of
Example 4.2.4. The attribute occurrendésk[1].same andblock[1].env on the right side of the pro-
duction are not copying. Therefore a new nonterminélis inserted beforélock:

block — decl N block
N — €

The new nonterminal symbadV has inherited attributegsame, env}. It doesn’t need any synthesized
attributes. The new semantic rules for the transformeduymritiahn:

N.same = let (z,7) = decl.new
in block[0].same U {x}
N.env = let (x,7) = decl.new

in block[0].env @ {x — T}
block[1].same = N.same
block[1].env = N.env
block[1].0k = let (z,7) = decl.new
in if x ¢ block[0].same
then block[1].ok

else false

SinceN has only inherited attributes, it doesn’t need any semanlés. We observe that the inherited
attributessame andenv of the nonterminablock are both copying after the transformatiortl

Inserting nonterminaN, ; doesn’t change the accepted language. Howevef fRg:) property may
be lost. In Example 4.3.7 this is not the case. If the undeglyiontext-free grammar is still R(k)-
grammar after the transformation we call the attribute gream’. R attributed

After the transformation the only noncopying inheritedibtite occurrences are the ones at the
newly introduced nonterminal¥,, ;. At a reducetransition forN,, ; the LR parser has identified the
productionp and the positiory in the right side ofp at which it is just positioned. At reduction the
new value for the inherited attribubds computed and stored in the global attribute frafn&he states
¢’ which the parser may reach by a transition under nonterniipgl are associated with an attribute
frame old(¢'). This attribute frame does not contain the values of syizkdsattributes. Instead the
previous values of inherited attributes Bfare stored that were overwritten by the reduction. These
previous values are required to reconstruct the originalegof the inherited attributes before the
descend into the subtree far.

Let us consider more precisely how the value of an inheritgibate b of the nonterminalv,, ; can
be computed. Lep : X — «.N, ;3 be the production that results from the transformationiappl
to p, wherea has lengthm. Before thereducetransition forV,, ; there is a sequencgg; . .. ¢, on
top of the parse stack, whegg, . . ., ¢,, have the sequence of entry symbolsinThe evaluation of
the semantic rules for the inherited attribtitef N, ; accesses the values of the synthesized attributes
of the symbols iny in the attribute frames of the states . . ., ¢,,. The attribute evaluator can access
the values of the inherited attributeof the left sideX in the global frameZ if the attributea was
not defined by anyV, ; with ¢ < j in the evaluation so far of the productipnHowever if that was
the case, the value afcan be accessed in the frami (¢;) to stateg; , that corresponds to the first
redefinition ofa in the right side op.

Let us consider in detail, what happensr@educetransition for a transformed productign Let
Ny ji»---,Npj. be the sequence of new nonterminals that were inserted byrahsformation in

4.4 "Ubungen 145

the right side of the productiop, and letm be the length of the transformed right side. Before
the reducetransition there is a sequengéy; . .. g, Of states on top of the parse stack where the
statesg;, , . . ., ¢j,+r—1 corresponf to the nonterminals, ;,,..., N, ;.. Using the attribute frames
old(gj,), ..., old(gj,+r—1) the allocation of the inherited attributes before the deto®o the parse
tree forX is reconstructed. If an attributeoccurs in no frameld(q;,+.,—1), Z contains the value df.
Otherwise the value dfis set to the value df in the first frameold(g;,+,—1) in whichb occurs. This
reconstruction of the global fran¥efor the inherited attributes is shown in Figure 4.16. If trenfieZ

is reconstructed before processing the right side of prioolug, the semantic rules for the computation
of the synthesized attributes of the left silecan be applied. Any required synthesized attribute of the
ith symbol occurrence of the right sidetan be accessed in the attribute frame;of

before after

g5 >

QG —>—c 2 b 9 c 2

5
b 4 i b1

@ —b 1

o | =[] A
-] A

@

Fig. 4.16. The reconstruction of the inherited attributes eg@ucetransition for a productioX — ~ with |y| =5
andé(q’, X) = q. The attribute framesld(g2) andold(q4) contain the overwritten inherited attributeandc in
7.

The described method allows extendig parsers, such that they do not only evaluate synthesized
attributes on a stack, but fdrR attributed grammars also the needed inherited attribotesach state.

Example 4.3.8 The attribute grammaBoolExpof Example 4.2.5 id. attributed, but neithef. L- nor
LR attributed. IA newe-nonterminal must be inserted at the beginning of the rigie of the left
recursive production for the nonterminalsince the inherited attribut@ucc of nonterminalF’ of the
right side is noncopying. Correspondingly, a newonterminal must be inserted at the beginning of
the right side of left recursive production for the nonteradil’ since the inherited attribut&ucc of

the nonterminal is noncopying. This leaves the grammar no long&(k) foranyk > 0. O

4.4 " Ubungen

1.11
Wie ist der Inhalt der Symboltabelle im Rumpf der Prozeghimter der Deklaration der Prozedur
r in Beispiel 4.1.27?

2.12
Gegeben seien die folgenden Operatoren:

