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Semantic Analysis

4.1 The Task of Semantic Analysis

Some required properties of programs cannot be described bycontext-free grammars. These proper-
ties are described bycontext conditions. They are meant to prevent programming mistakes. The most
important examples for such context-conditions are the requirements to declare identifiers and type
consistency.

Fundamental for these requirements are the rules of the programming language forvalidity and
visibility of identifiers. The rules forvalidity determine for identifiers declared in the program what the
scopeof a declaration is, that is, in which part of the program, thedeclaration may have an effect. The
rules forvisibility determine, where in its scope an identifier isvisibleor hidden.

The rules concerningdeclarednessdetermine, whether an explicit declaration has to be given for an
identifier, where it has to be placed, and whether multiple declarations of an identifier are allowed. The
typeof a value determines which operations can be applied to it, the type of a variable, values of which
type it may take on. Thetype consistencyof a program guarantees that at run time no operation can be
applied to operands of the wrong type.

Some Notions

We use the following notions to describe the task of semanticanalysis.
An identifier is a symbol (in the sense of lexical analysis), which can be used in a program to

name a program element. Program elements in imperative languages that may be named are constants,
variables, types, modules, functions, procedures, parameters, and statement labels. In object-oriented
languages such as JAVA also classes and interfaces, their attributes and their methods, and their types
can be named. In functional languages such as OCAML variables and functions can be named by iden-
tifiers. Data structures can be built using constructors, another class of identifiers. The concept of these
constructors can be seen as a generalization of enumerationtypes in imperative languages, which list
a sequence of constants whose identifiers are introduced together with the type declaration. In logic
languages such as PROLOG there exist identifiers for predicates, constants, data constructors, and vari-
ables.

Some identifier are introduced in explicit declarations. The occurrence of an identifier in its decla-
ration is thedefining occurrenceof the identifier, all other occurrences areapplied occurrences. In im-
perative programming languages such as C and in object-oriented languages such as JAVA all identifiers
need to be explicitly introduced. This also holds essentially for functional languages such as OCAML .
In PROLOG, however, neither the used constructors and atoms nor the local variables in clauses are ex-
plicitly introduced. To make a difference between them the different kinds of identifiers are taken from
different name spaces. Variables begin with a capital letter or an underscore, constructors and atoms
with lower-case letters. The termf(X, a) represents an application of the binary constructorf/2 to the
variableX and the atoma. Instead of through an explicit declaration an identifier isintroduced by its
syntactically first occurrence in a clause.
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Each programming language hasscoping constructs, which form boundaries for where an identifier
can be used. Imperative languages offer blocks, packages, modules, function and procedure declarations
for this purpose. Object-oriented languages such as JAVA additionally have classes and interfaces, which
may be organized in hierarchies. Functional languages suchas OCAML also offer modules to collect
a set of declarations. Declarations of variables and functions allow to restrict the use of identifiers to
program parts. PROLOG essentially has only the clause as structuring concept.

Such structuring concepts are calledscopeconstructs. A method declaration in a JAVA program is
a scope in the same way as a module in OCAML , or a clause in PROLOG.

Thetypeof a program element restricts what can be done with the element during the execution of
the program. A value of typeint can only be operated on by arithmetic operations together with other
values of typeint . These operations yield again values of typeint . int values are internally represented
in a fixed way, for instance, as 32 Bits and need therefore always the same space. The compiler for an
imperative language reserves this space for variables of type int . It can rely on the fact that at run time
any access to this allocated memory will always find anint value. In purely functional languagesint
values cannot be explicitly stored. A variable denotes an expression, which can be reduced to a value.
The type of a variable must therefore match the types of the values that the variable may have.

Concrete and Abstract Syntax

Conceptually, the input to semantic analysis is some representation of the structure of the program as it
is produced by syntactic analysis. The most popular representation of this structure is the parse tree ac-
cording to the context-free for the language. This tree is called theconcrete syntaxof the program. The
context-free grammar for a programming language contains information that is important for syntax
analysis, but irrelevant for the subsequent compiler phases. Typical for this kind of information are the
nonterminals used to express operator precedence in expressions. Once the syntactic structure of the
program is recognized these nonterminals have lost their function. Therefore compilers use simplified
representations of the syntactic structure, calledabstract syntaxtrees. It only represents the constructs
occurring in the program and their nesting.

Example 4.1.1The concrete syntax of the program fragment

if (x + 1 > y)

z ← 1;

elsez ← 2;

is shown in Figure 4.1. We assumed that the associated context-free grammar differentiates between
the precedence levels for assignments, comparison, addition, and multiplication operators. Notable are
the long chains of chain reductions, that is, replacements of one nonterminal by another one, which
were introduced to bridge the precedence differences. An abstract parse tree does not contain these
sequences of chain reductions. For each statement type there is one constructor forming a tree out of the
constituents of the statement. Similarly for arithmetic expressions; operators are used as constructors
and the operands as their constituents. Figure 4.2 shows a corresponding abstract representation.⊓⊔

In the following, we will sometimes use concrete, sometimesabstract syntax whatever is more
intuitive. Compiler, however, always use abstract syntax for semantic analysis and for some parts of
code generation.

4.1.1 Rules for Validity and Visibility

Programming languages often allow to use one identifier for different program elements and to have
several declarations of the identifier. Thus a rule is neededthat determines to which defining occurrence
an applied occurrence refers. These rules are the ones forvalidity and forvisibility.

Thescopeof the defining occurrences of an identifierx is that part of a program in which an applied
occurrence ofx can refer to this defining occurrence.

The visibility of a defining occurrences of an identifier can be restricted inits scope by hiding
it. On the other hand there exist possibilities to make an identifier explicitly visible even outside of its
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scope. These means are thequalificationof components of structured types and theimportof identifiers
throughuse clauses.

The process ofidentification of identifiers. identifies for each applied occurrence of an identifier
the defining occurrence that belongs to this applied occurrence according to the rules of validity and
visibility of the language. We will see later that in programming languages that allow overloading of
identifiers an applied occurrence of an identifiers can referto several defining occurrences.

The validity and the visibility rules of a programming language are strongly related to the type of
nesting of scopes that the language allows.

COBOL has no nesting of scopes; all identifiers are valid and visible everywhere. FORTRAN77 only
allows one nesting level, that is, no nested scopes. Procedure and functions are all defined in the main
program. Identifiers that are defined in a block are only visible within this block. An identifier declared
in the main program is visible starting with its the declaration, but hidden within procedure declarations
that contain a new declaration of the identifier.

Modern imperative and object-oriented languages such as PASCAL, ADA, C, C++, C♯ and JAVA and
functional programming languages allow arbitrarily deep nesting of blocks. The ranges of validity and
visibility of defining occurrences of identifiers are fixed byadditional rules. In alet construct

let x = e1 in e0

in OCAML the identifierx is only valid in thebodye0 of the let construct. Applied occurrences ofx
in the expressione1 refer to defining occurrence ofx in enclosing blocks. The scope of the identifier
x1, . . . , xn of an let-recconstruct
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let rec x1 = e1 and . . . and xn = en in e0

consists of the expressionse0, e1, . . . , en. This rules makes it difficult to translate programs in one
pass; when translating a declaration the compiler may need informations about an identifier whose
declaration has not yet been processed. In PASCAL, ADA and C therefore haveforward-declarations to
avoid this problem.

PROLOG has several classes of identifiers, which are characterizedby their syntactic positions.
There is no hiding; so validity and visibility agree. The identifiers of the different classes have the
following scopes:

• Predicates, atoms, and constructors have global visibility; they are valid in the whole Prolog pro-
gram and in associated queries.
• Identifiers of clause variables are valid only in the clause in which they occur.

Explicit declarations exist only for predicates: These aredefined by the list of their alternatives.
Scoping in JAVA , not yet translated

Conclusion

Not everywhere in the scope of a defining occurrence ofx an applied occurrence ofx refers to this
defining occurrence. If the defining occurrence isglobal to the actual block that is, not declared in its
declaration part a local (re)declaration ofx canhideit. It is then notdirectly visible. However, there exist
several possibilities to make a not directly visible defining occurrence of an identifiersx visible within
its scope. The visibility rules of a programming language determine to which defining occurrence of
an identifier an applied occurrence may refer. Theextension of an identifierby another identifier of a
construct containing the declaration makes it possible to refer to a hidden defining occurrence. We have
seen how complex these rules may be at the example of the language JAVA .

• Some languages have directives that allow to make a hidden defining occurrence of an identifier
visible in a part of its scope, aregion, without extension of the identifier. We have seen theimport
directive in JAVA . These directives are part of the static and not of the dynamic semantics. The
boundaries of a region are determined by associated openingand closing parentheses, such as the
with directive in PASCAL, are they are the boundaries of the directly enclosing program unit. In
JAVA this is the file. Theusedirective in ADA lists identifiers of enclosing program units whose
declarations are thereby made visible. The visibility of these identifiers stretches from the end of
theusedirective to the end of the enclosing program unit.
• If a language (and not only its implementation) knows the concept separate compilation of program

units there exist directives to make declarations in separately compiled units visible. Each sepa-
rately compiled program unit can offer some of their declarations for external reference. In JAVA

this can be controlled by the modifierpublic, protectedandprivate. In ADA a package (module)
offers the definitions of its public part, individual procedures offer their formal parameters, These
identifiers are again associated with scopes enclosing all programs that are linked together after
being separately compled. Thewith directive in ADA makes identifiers visible that are offered by
separately compiled units and mentioned in thewith list.

In conclusion we record that the scope of the defining occurrence of an identifier, its range of validity, is
the part of a program in which the identifier can be used to access the element named by the identifier.
This element is either directly visible or can be made visible.

4.1.2 Checking the Context-Conditions

We will now sketch how compilers check the context-conditions. We consider the simple case of a
programming language with nested scopes, but without overloading.

The task is decomposed in two subtasks. The first subtask consists in checking whether identifi-
cation are declared and in identifying defining with appliedoccurrences. We call this taskdeclaration
analysis. This analysis is determined by the rules for validity and visibility of the programming lan-
guage. The second subtask,type checking, examines whether the types of program objects confirm to
the rules of the type system. It may also infer types for objects for which no types were given.
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Identification of Identifiers

The rules for validity and visibility determine in our simple case that in a correct program, exactly one
defining occurrence of an identifier belongs to each applied occurrence of the identifier. The identifi-
cation of identifiers consists in linking each applied occurrence to a defining occurrence or to find that
no such linking is possible or that more than one exist. The result of this identification is later used for
type checking and possibly for code generation. It must therefore be passed on to subsequent compiler
phases. There exist several possibilities for the representation of the link between applied and defining
occurrence. Traditionally the compiler builds a so-calledsymbol table, in which the declarative infor-
mation for each defining occurrence of an identifier is stored. This symbol table is frequently organized
similarly to the block structure of the program. This helps to quickly reach the corresponding defining
occurrence starting from an applied occurrence.

Such a symbol table is not the result of the identification of identifiers, but it support the identifica-
tion. The result of the identification consists in the establishment of the links from the nodes for applied
occurrences of an identifierx to the node of defining occurrence ofx. abgespeichert ist.

Which operations must the symbol table offer? When the declaration analyzer meets a declaration
it must enter into the symbol table the identifier and a reference to the declaration node in the parse tree.
Another operation must register the opening of a block, yet another the closing of a block. The latter
operation can delete the entries for the declarations of theclosed block from the symbol table. This
way, the symbol table contains at any point in time exactly the entries for declarations of all actually
opened, but not yet closed blocks. When the declaration analyzer meets an applied occurrence of an
identifier it searches the symbol table according to the rules for validity and visibility for the entry
of the corresponding defining occurrences. When it has foundthis entry it copies the reference to the
declaration node to the node for the applied occurrence.

Thus the following operations on the symbol table are required:
(a) create_symb_table creates an empty symbol table.

(b) enter_block registers the opening of a new block.

(c) exit_block resets the symbol table to the state before the lastenter_block.

(d) enter_id(id, decl_ptr) enters an entry for identifierid into the symbol table.

This contains the reference to its declaration node,

which is passed indecl_ptr.

(e) search_id(id) searches the defining occurrence toid and returns the reference

to the declaration node if it exists.
The last two operations (functions) work relative to the last opened block, the actual block.

Before we describe a possible implementation of the symbol table, that is, of the procedures and
functions listed above we demonstrate their use by the declaration analysis. We assume validity rules
as those for ADA; the defining occurrence of an identifier is only valid starting with the end of the
declaration.

proc analyze_decl(k : node);
proc analyze_subtrees(root: node);
begin

for i := 1 to #descs(root) do (∗ #descs:number of children∗)
analyze_decl(root.i) (∗ i-th child of root ∗)

od
end;

begin
case symb(k) of (∗ label ofk ∗)
block: begin

enter_block;
analyze_subtrees(k);
exit_block

end;
decl: begin
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analyze_subtrees(k);
foreach identifierid decl. heredo

enter_id(id, ↑ k)
od

end;
appl_id: (∗ applied occurrence of identifierid ∗)

store search_id(id) ank;
otherwise:if k no leafthen analyze_subtrees(k) fi
od

end

The Ada rules for validity determine that in thedeclcase of thecase-statement first all declarations
are recursively processed before the local declarations are entered. The modification of this algorithm
for ALGOL-like and PASCAL-like validity rules are left to the reader (see Exercise 1.4).

Checking Type Consistency

The check for type consistency can be performed in one bottom-up pass over the expression tree. For
terminal operands, that are constants the type is fixed. For identifiers the analysis obtains the type from
their declaration. For each operator one checks in a table (see Figure 4.4), whether the types of the
operands match the requirements of the operator and which isthe result type. If overloading is allowed,
the right operation is selected for overloaded operators.

If the programming language allows type conversions, for instance, from integer→ real, then it
must be checked for each operator and each combination of operand types that don’t match whether the
operand types can be made to match by type conversions.

Implementation of the Symbol Table

The implementation of a symbol table must guarantee that thesearch_id-function finds the correct entry
for an identifier according to the validity rules out of several coexisting entries.

A first solution could be a linear list ofenter_block- andenter_id-entries. New entries are attached
at the end, andexit_blockerases the lastenter_id-entries including the lastenter_block-entry.search_id
searches the list from the end and finds all actually valid identifiers according to the Ada validity rules.
This linear lists is apparently administered in a stack-like fashion So, one can actually organizing it as
a stack.

Disadvantageous at this solution is the high effort forsearch_id, which linearly depends on the
number of declared identifiers. We can obtain a solution withlogarithmic search time if the entries for
each block are arranged in a binary search tree. The search starts with the search tree for the actual
block and continues with the search tree for the enclosing block until a defining occurrence is found, or
until it is clear that no such occurrence exists.

Under the assumption that each defined identifier has severalapplied occurrencessearch_idshould
be made very efficient, if possible in constant time. This canbe achieved by using the following data
structure:

The entries of all currently valid defining occurrences of each identifier are kept in a singly linked
list; each new definition is attached to the end of this list. This last entry is pointed to by a component
of an array that is indexed by the identifier. All entries belonging to the same block are also linked in
a chain to support the procedureexit_block. A list head associated with this block points to this chain.
The set of these list heads can be managed in a stack-like fashion.

Example 4.1.2
Figure 4.4 shows the symbol table for the program in Figure 4.3 and den program point labeled with
∗. ⊓⊔

The implementation of the symbol-table operations is as follows:
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Fig. 4.3.Nested scopes
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proc p (* forward declaration *)

proc create_symb_table;
begin

create empty stack of block entries
end;

proc enter_block;
begin

push entry for new block onto stack
end;

proc exit_block;
begin

foreach declaration entry of the actual blockdo
delete entry

od;
delete block entry from stack

end;
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Fig. 4.4. Symboltabelle zum Programm aus Abbildung 4.3. Die Verkettung der Eintr"age zu einem Block ist
nur f"ur Block 4 angegeben, da sonst das Diagramm zu un"ubersichtlich w"urde. Sonst sind die “Adressen”der
K"astchen, die Zahlen 1 - 7 angegeben. Das nicht ausgef"ullte K"astchen in jedem Eintrag enth"alt jeweils den
Verweis auf den Unterbaum f"ur die Deklaration.
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proc enter_id( id: Idno; decl:↑ node);
begin

if there exists an entry forid in this block
then error(′′double declaration′′)
fi;
create new entry withdecland no. of actual block;
attach this entry at the end of the linear list forid ;
attach this entry at the end of the linear list for this block;

end;

function search_id( id: idno ) ↑ node;
begin

if list for id is empty
then error(′′undeclared identifier′′)
else return (value of decl field of first entry in list forid )
fi

end

4.1.3 Overloading of Identifiers

A symbol isoverloaded, if it may have several meanings at some point in the program.Already math-
ematics knows overloaded symbols, for example, the arithmetic operators, which, depending on the
context, may denote operations on integral, real, or complex numbers, or even operations in rings and
fields. The early programming languages Fortran and Algol60have followed the mathematical tradi-
tion and admitted overloaded operators. A type determination as presented in the last section needs to
resolve the overloading; it should identify the right operation for an overloaded operator depending the
types of its operands and possibly the expected type of the result.
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Programming languages often allow overloading of use defined identifiers, such as procedure or
function names. In correct programs one applied occurrenceof an identifierx may correspond to several
defining occurrences ofx. A redeclaration of an identifierx only hides an enclosing declaration ofx if
both have the same type. A program is correct only if the ”typeenvironment” of each applied occurrence
allows the compiler to select exactly one defining occurrence. The type environment of procedure and
function calls consists of the combination of the types of the actual parameters.

The visibility rules of Ada combined with the possibility tooverload symbols lead to a hardly
understandable set of conflict-resolution rules for the cases where identifiers are visible or are made
visible in different ways.

Example 4.1.3 (Ada program (Istvan Bach))

procedure BACH is
procedure put (x: boolean) is begin null; end;
procedure put (x: float) is begin null; end;
procedure put (x: integer) is begin null; end;
package x is

type boolean is (false, true);
function f return boolean; -- (D1)

end x;
package body x is

function f return boolean is begin null; end;
end x;
function f return float is begin null; end; -- (D2)
use x;

begin
put (f); -- (A1)
A: declare

f: integer; -- (D3)
begin

put (f); -- (A2)
B: declare

function f return integer is begin null; end; -- (D4)
begin

put (f); -- (A3)
end B;

end A;
end BACH;

The packagex declares in its public part two new identifiers, namely the type identifierboolean
and the function identifierf. These two identifiers are made potentially visible after the semicolon by
the use directiveuse x; (see after (D2)). Function identifiers in Ada can be overloaded. The two
declarations off, at (D1) and (D2), have different „parameter profiles“ in this case different result
types. they are therefore both at program point (A1) (potentially) visible.

The declarationf: integer in the program unitA (siehe (D3)) hides the outer declaration (D2)
of f, since variable identifiers in Ada cannot be overloaded. Forthis reason the declaration (D1) is not
visible. Declaration (D4) off in program unitB hides declaration (D3), and since this one hides decla-
ration (D2), transitively also D2. Declaration (D1) potentially made visible through the use directive is
not hidden, but still potentially visible. In the contextput(f) (see (A3))f can only refer to declara-
tion (D4) since the first declaration ofput uses a type,boolean, that is different from the result type
of f in (D1). ⊓⊔

The process of selecting the right defining occurrences of overloaded symbols is calledoverload
resolution. The resolution of overloadings is performed after the identification of identifiers within
certain constructs of the language, that is, restricted to expressions, (composed) identifiers etc.
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The resolution algorithm works on the representation of theAda program as abstract parse tree.
Conceptually it uses four traversals of the expression tree. However, the first can be merged with the
second and the third with the fourth. To formulate the algorithm we introduce some notation: At each
nodek of the abstract parse tree

#descs(k) returns the number of child nodes ofk,

symb(k) returns the symbol labelingk,

vis(k) returns the set of definitions ofsymb(k) visible atk

ops(k) returns the set of actual candidates for the overloaded symbol symb(k), and

k.i yields as usual theith child ofk.

For each defining occurrence of an overloaded symbolop with typet1 × · · · × tm → t let
rank(op) = m

res_typ(op) = t

par_typ(op, i) = ti (1 ≤ i ≤ m).

The two latter we extend to sets of operators. For each expression in which overloading of operators
needs to resolved a type, the so-called a-priori type, is computed from its context.

proc resolve_overloading(root: node, a_priori_type: type);

func pot_res_types(k: node): set oftype;
(∗ potential types of the result∗)

return {res_typ(op) | op ∈ ops(k)}

func act_par_types(k: node, i:integer): set oftype;
return {par_typ(op, i) | op ∈ ops(k)}

proc init_ops
begin

foreach k
ops(k) := {op | op ∈ vis(k) and rank(op) = #descs(k)}

od;
ops(root) := {op ∈ ops(root) | res_typ(op) = a_priori_typ}

end;

proc bottom_up_elim(k: node);
begin

for i := 1 to #descs(k) do
bottom_up_elim(k.i);
ops(k) := ops(k)− {op ∈ ops(k) | par_typ(op, i) 6∈ pot_res_types(k.i)}

(∗ remove the operators, whoseith parameter type does not
match the potential result types of theith operand∗)

od;
end;

proc top_down_elim(k: node);
begin

for i := 1 to #descs(k) do
ops(k.i) := ops(k.i)− {op ∈ ops(k.i) | res_typ(op) 6∈ act_par_types(k, i)};

(∗ remove the operators, whose result type does not match
any type of the corresponding parameter∗)

top_down_elim(k.i)
od;

end;

begin
init_ops;
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bottom_up_elim(root);
top_down_elim(root);
check whether now allopssets have exactly one element; otherwise report an error

end

It looks like the bottom-up elimination and the top-down elimination do the same thing. This is
almost correct. Figure 4.5 shows a combination ofop1- andop2 labeled nodes. Each node is associ-
ated with the set of potential definitions of the operator. Bottom-up elimination possibly eliminates
candidates from the set of definitions ofop1, top-down elimination from the set of definitions ofop2.

Fig. 4.5.The elimination of potential operators in two directions, bottom up and top down

bottom up–Elimination

{. . . X . . .}

. . .i. . .

op1

op2 {. . . X . . .}

top down–Elimination

4.2 Attribute Grammars

We have described tasks to be performed by semantic analysisin Section 4.1. In line with our pre-
sentation so far it would be nice to also have a description mechanism for these tasks, from which
implementations could be generated.

Remember the algorithm for overload resolution in Section 4.1.3, in particular the two passes
bottom-up elimination and top-down elimination. One step of bottom-up elimination at some node
k removes from the setops(k) of potential operators atk all those where the type of theith parameter
does not agree with the result type of any potential operatorat nodek.i. Hence, the new set of potential
operators at nodek is determined based on the set of potential operators at the children ofk. One step
of top-down elimination at some nodek removes operator candidates atk.i whose result type does not
agree with any of the parameter types of parameteri of the operator candidates atk. Here, the set of po-
tential operators atk.i is computed based on the set of potential operators atk. The overload-resolution
algorithm needs this flow of information in both directions.

An elegant and powerful description mechanism for tasks like these areattribute grammars. They
extend context-free grammars by associatingattributeswith the symbols of the underlying context-free
grammar. These attributes are containers for static semantic information. Their values are computed by
computations performed on trees, with computations traversing the trees as needed.

The set of attributes of a symbolX is denoted byA(X). With each attributea is associated a type
τa, which fixes the set of possible values for the instances of the attribute.

Consider a productionp : X0 −→ X1 . . . Xk with k ≥ 0 symbols occurring on the right side. To
tell the different occurrences of symbols in productionp apart, we number these from left to right. The
left side nonterminalX0 will be denoted byp[0], theith symbolXi on the right side ofp by p[i] for
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i = 1, . . . , k. The attributea of a symbolX has anattribute occurrenceat each occurrence ofX in a
production. The occurrence of an attributea at a symbolXi is denoted byp[i].a.

Attributes also havedirections, which can be better understood, if we think of production appli-
cations in parse trees. The attributes of a symbolX are eitherinheritedor synthesized. The values of
(instances of) synthesized attributes at a node are computed from (values of attribute instances in) the
subtree at this node. The values of (instances of) inheritedattributes at a node are computed from the
context of the node, see Figure 4.6. All the attribute instances with ingoing yellow edges are computed
within the production. These are the occurrences of synthesized attributes of the left side of the produc-
tion and the occurrences of inherited attributes of the right side of productions. Together we call them
defining occurrencesof attributes in this production. All other occurrence of attributes in the produc-
tion are calledapplied attribute occurrences. Each production hassemantic rules, which describe how
the values of defining attribute occurrences in the production are computed from the values of other
attribute occurrences of the same production. So, semanticrules need to be given for each inherited
attribute occurrence on the right side of a production and each synthesized attribute occurrence on the
left side. The set of inherited and synthesized attributes of an attribute grammar are denoted byI and
S, resp. and the set of inherited and synthesized attributes of a symbolsX correspondingly byI(X)
andS(X).

X1

X0

Xk

Fig. 4.6. An attributed node in the parse tree with its attributed successors. Instances of inherited attributes are
drawn as boxes to the left of syntactic symbols, instances ofsynthesized attributes as boxes to the right of symbols.
Red (darker) arrows show the information flow into the production instance from the outside, yellow (lighter)
arrows symbolize functional dependences between attribute instances that are given through the semantic rules
associated with the production.

In our examples we write the semantic rules in an OCAML -like programming language.
PopularLR parsers such as YACC and BISON offer a restricted attribute mechanism: Each symbol

of the grammar has one associated attribute, and to each production there is one semantic rule that
describes how the value of the attribute occurrence on the left side is computed from the values of the
right-side attribute occurrences.

Example 4.2.1Consider a context-free grammar with the nonterminalsE, T, F for arithmetic expres-
sions. The set of terminals consists of parentheses, operators, and the symbolsvar andconst, represent-
ing int variables and constants. The nonterminals have an attribute tree that will hold the trees for the
words that have been derived from them.

The productions of the grammar are extended by semantic rules as follows: Different occurrences
of the same symbol are indexed.

Example 4.2.2
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p1 : E −→ E + T

E[0].tree = Plus (E[1].tree, T.tree)

p2 : E −→ T

E.tree = T.tree

p3 : T −→ T ∗ F

T [0].tree = Mult (T [1].tree, F.tree)

p4 : T −→ F

T.tree = F.tree

p5 : F −→ const

F.tree = Int (const.val )

p6 : F −→ var

F.tree = Var (var.id)

p7 : F −→ (E )

F.tree = E.tree

⊓⊔

The trees are built with the constructorsPlus, Mult, Int, Var. Further, we assume that the symbolconst

has an attributeval , which will hold the value of the instances ofconst, and the symbolvar has an
attributeid , which will hold the unique codes for the instances ofid . ⊓⊔

If the semantic rule for a defining attribute occurrence usesan attribute occurrence as argument there
is afunctional dependencefrom the argument attribute-occurrence to the defining attribute occurrence.

Attributes of symbols labeling nodes of parse trees are called attribute instances. They exist at
compile time after syntactic analysis has produced the parse tree.

The functional dependences between attribute occurrencesdetermine in which order the attribute
instances at nodes of the parse tree may be evaluated. Arguments of semantic rules need to be evaluated
before the rules can be applied to compute the value of the associated attribute (instance). There exist
some constraints on the functional dependences to ensure that thelocal semantic rules of the attribute
grammar for the attribute occurrences in the productions can be composed to aglobal computation of
all attribute instances in a parse tree. The values of attribute instances at the individual nodes of the
parse tree are computed by a global algorithm, which is generated from the attribute grammar, and
which at each noden adheres to the local semantic rules of the production applied atn. The theme of
this chapter is how such an algorithm can be automatically generated from a given attribute grammar.

An attribute grammar is innormal form if all defining attribute occurrences in productions only
depend on applied occurrences in the same productions. If not explicitly stated otherwise we assume
that attribute grammars are in normal form.

We have admitted synthesized attributes for terminal symbols of the grammar. In compiler design,
attribute grammars are used to specify semantic analysis. This phase follows lexical and syntactic anal-
ysis. Typical synthesized attributes of terminal symbols are values of constants, external representations
or unique encodings of names, and the addresses of string constants. The values of these attributes are
delivered by the scanner, at least if it is extended by semantic functionality. So, in compilers synthe-
sized attributes of terminal symbols play an important role. Also inherited attribute instances at the root
of the parse tree have no semantic rules in the grammar to compute their values. However, the compiler
may have some use for them and therefore will initialize them.

4.2.1 The Semantics of an Attribute Grammar

The semantics of an attribute grammar determines for each parse treet of the underlying context-free
grammar which values the attributes at each node int should have.

For each noden in t let symb(n) the symbol of the grammar labelingn. If symb(n) = X then
n is associated with the attributes inA(X). The attributea ∈ A(n) of the noden addressed byn.a.
Furthermore we need an operator to navigate from a node to itssuccessors. Letn1, . . . , nk be the
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sequence of successors of noden in parse treet. n[0] denotes the noden itself, andn[i] = ni for
i = 1, . . . , k denotes theithn successor ofn in the parse treet.

If X0 = symb(n) and, ifXi = symb(ni) for i = 1, . . . , k are the labels of the successorsni of n
thenX0 −→ X1 . . .Xk is the production of the context-free grammar that was applied at noden. The
semantic rules of this productionp provide the method to compute values of the attributes at thenodes
n, n1, . . . , nk. The semantic rule

p[i].a = f(p[i1].a1, . . . , p[ir].ar)

for the productionp becomes the semantic rule

n[i].a = f(n[i1].a1, . . . , n[ir].ar)

for the noden in the parse tree. We assume that the semantic rules specifytotal functions. Lett be a
parse tree and

V (t) = {n.a | n node int, a ∈ A(symb(n))}

be the set of all attribute instances int. The subsetVin (t) of inherited attribute instances at the rootl
and of synthesized attribute instances at the leaves are called the set ofinput attribute instancesof t.

Assigning values to the input attribute instances and instantiating the semantic rules of the attribute
grammar at all nodes int produces a system of equations in the unknownsn.a that has for all but the
input attribute instances exactly one equation. LetAES(t) this attribute equation system. IfAES(t) is
recursive (cyclic) it can have several solutions or no solution. IF AES(t) is not recursive there exists
for assignmentσ of the input attribute instance exactly one attribute assignment for the parse treest
agreeing on the input attribute instances withσ and satisfying all equations. The attribute grammar
is therefore calledwellformed, if the system of equationsAES(t) is not recursive for any parse treet
of the underlying context-free grammar. In this case we define the semantics of the attribute grammar
as the function mapping each parse treet and each assignmentσ of the input attribute instances to
an attribute assignment that agrees on these withσ and that additionally satisfies all equations of the
systemAES(t).

4.2.2 Some Attribute Grammars

In the following we present some attribute grammars that solve essential subtasks of semantic anal-
ysis. The first attribute grammar shows how types of expressions can be computed using an attribute
grammar.

Example 4.2.3 (Type checking)The attribute grammarAGtypes beschreibt die type determination for
expressions containing assignments, nullary functions, operators+,−, ∗, / and variable and constants
of typeint orfloatin a C-like programming language with explicit type declarations for variables. The
attribute grammar has an attributetyp for the nonterminal symbolsE, T andF and for the terminal
symbolconst, which may take valuesInt andFloat. This grammar can be easily extended to more
general expressions with function application, componentselection in composed values, and pointers.
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E −→ var ′=′ E

E[1].env = E[0].env

E[0].typ = E[0].env var.id

E[0].ok = let x = var.id

in let τ = E[0].env x

in (τ 6= error) ∧ (E[1].type ⊑ τ)

E −→ E aop T E −→ T

E[1].env = E[0].env

T.env = E[0].env

E[0].typ = E[1].typ ⊔ T.typ

E[0].ok = (E[1].typ ⊑ float) ∧ (T.typ ⊑ float)

T.env = E.env

E.typ = T.typ

E.ok = T.ok

T −→ T mop F T −→ F

T [1].env = T [0].env

F.env = T [0].env

T [0].typ = T [1].typ ⊔ F.typ

T [0].ok = (T [1].typ ⊑ float) ∧ (F.typ ⊑ float)

F.env = T.env

T.typ = F.typ

T.ok = F.ok

F −→ (E) F −→ const

E.env = F.env

F.typ = E.typ

F.ok = E.ok

F.typ = const.typ

F.ok = true

F −→ var F −→ var ()

F.typ = F.env var.id

F.ok = (F.env var.id 6= error)

F.typ = (F.env var.id) ()

F.ok = match F.env var.id

with τ () → true

| _ → false

The attributeenv of the nonterminalsE, T andF is inherited, all other attributes of grammarAGtypes

are synthesized.
The semantic rules in this grammar are not necessarilytotal functions. For instance, they are not

total if an identifier is used, but not declared in a program. In this case, an entry for this identifier would
be searched for in the symbol tableenv , Also, the right side of the semantic rule to the third production
produces the valueInt for the operator′÷′ only if the attribute occurrenceT [1].typ andF.typ both
have the valueInt. Otherwise it is not defined.

If a semantic rule is undefined for particular arguments thisis understood as returning an error
value. No operator is defined for such an error value. Thus, the error value propagates. The compiler
would reject a program with error values in attributes.⊓⊔

We use a convention for writing attribute grammars to reducethe writing effort caused mainly by chain
productions:

If no semantic rule for a defining occurrence is given the identity function as semantic rule is assumed.

Nat"urlich muss im Fall der identischen "Ubergabe an ein abgeleitetes attribute der linken Seite genau
ein gleichnamiges abgeleitetes attribute auf der rechten Seite auftreten. Die folgenden Beispiele be-
nutzen diese Konvention – zumindest für RegelnA −→ αXβ, deren rechte Seite nur ein SymbolX
enthalten, dessen Attribute mit den Attributen der linken SeiteA übereinstimmen.


