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Semantic Analysis

4.1 The Task of Semantic Analysis

Some required properties of programs cannot be describedrtgxt-free grammars. These proper-
ties are described bgontext conditionsThey are meant to prevent programming mistakes. The most
important examples for such context-conditions are thelirements to declare identifiers and type
consistency.

Fundamental for these requirements are the rules of thegroging language fovalidity and
visibility of identifiers. The rules fovalidity determine for identifiers declared in the program what the
scopeof a declaration is, that is, in which part of the program,dkelaration may have an effect. The
rules forvisibility determine, where in its scope an identifievisible or hidden

The rules concernindeclarednesdetermine, whether an explicit declaration has to be giveaff
identifier, where it has to be placed, and whether multip@atations of an identifier are allowed. The
typeof a value determines which operations can be applied todttyipe of a variable, values of which
type it may take on. Thg/pe consistencyf a program guarantees that at run time no operation can be
applied to operands of the wrong type.

Some Notions

We use the following notions to describe the task of semamtidysis.

An identifieris a symbol (in the sense of lexical analysis), which can kexlius a program to
name a program element. Program elements in imperativedaes that may be named are constants,
variables, types, modules, functions, procedures, pasmeand statement labels. In object-oriented
languages such ag\h also classes and interfaces, their attributes and theladst and their types
can be named. In functional languages such asM. variables and functions can be named by iden-
tifiers. Data structures can be built using constructorsttear class of identifiers. The concept of these
constructors can be seen as a generalization of enumetgpies in imperative languages, which list
a sequence of constants whose identifiers are introducethtgwith the type declaration. In logic
languages such aRBLOG there exist identifiers for predicates, constants, datatcectors, and vari-
ables.

Some identifier are introduced in explicit declarationse Blacurrence of an identifier in its decla-
ration is thedefining occurrencef the identifier, all other occurrences agplied occurrencedn im-
perative programming languages such as C and in objeattedéanguages such as/A all identifiers
need to be explicitly introduced. This also holds essdmgtfal functional languages such asc@wL.

In PROLOG, however, neither the used constructors and atoms nor¢haévariables in clauses are ex-
plicitly introduced. To make a difference between them tiffeint kinds of identifiers are taken from
different name spaces. Variables begin with a capitalr@itean underscore, constructors and atoms
with lower-case letters. The terfi{ X, a) represents an application of the binary construgito the
variable X and the atonmu. Instead of through an explicit declaration an identifieintsoduced by its
syntactically first occurrence in a clause.
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Each programming language h&oping constructsvhich form boundaries for where an identifier
can be used. Imperative languages offer blocks, packagek)les, function and procedure declarations
for this purpose. Object-oriented languages suchas ddditionally have classes and interfaces, which
may be organized in hierarchies. Functional languages asicBcAmML also offer modules to collect
a set of declarations. Declarations of variables and fanstallow to restrict the use of identifiers to
program parts. RoLOG essentially has only the clause as structuring concept.

Such structuring concepts are callmbpeconstructs. A method declaration in &4 program is
a scope in the same way as a module mA®IL, or a clause in ROLOG.

Thetypeof a program element restricts what can be done with the elecheing the execution of
the program. A value of typmt can only be operated on by arithmetic operations togethiér ather
values of typent. These operations yield again values of typte int values are internally represented
in a fixed way, for instance, as 32 Bits and need thereforeyawse same space. The compiler for an
imperative language reserves this space for variablegefity. It can rely on the fact that at run time
any access to this allocated memory will always findragnvalue. In purely functional languagées
values cannot be explicitly stored. A variable denotes gmession, which can be reduced to a value.
The type of a variable must therefore match the types of theegahat the variable may have.

Concrete and Abstract Syntax

Conceptually, the input to semantic analysis is some reptaton of the structure of the program as it
is produced by syntactic analysis. The most popular reptagen of this structure is the parse tree ac-
cording to the context-free for the language. This tree lieddheconcrete syntarf the program. The
context-free grammar for a programming language contaiftsrnation that is important for syntax
analysis, but irrelevant for the subsequent compiler phasgpical for this kind of information are the
nonterminals used to express operator precedence in sigresOnce the syntactic structure of the
program is recognized these nonterminals have lost theatiion. Therefore compilers use simplified
representations of the syntactic structure, cadlbsitract syntaxrees. It only represents the constructs
occurring in the program and their nesting.

Example 4.1.1 The concrete syntax of the program fragment

if (z+1>y)
z — 1

elsez «— 2;

is shown in Figure 4.1. We assumed that the associated ¢dnéexgrammar differentiates between
the precedence levels for assignments, comparison, addiind multiplication operators. Notable are
the long chains of chain reductions, that is, replacemehtsie nonterminal by another one, which
were introduced to bridge the precedence differences. Atradi parse tree does not contain these
sequences of chain reductions. For each statement tygeistare constructor forming a tree out of the
constituents of the statement. Similarly for arithmetipmessions; operators are used as constructors
and the operands as their constituents. Figure 4.2 showsesponding abstract representationl

In the following, we will sometimes use concrete, sometirabstract syntax whatever is more
intuitive. Compiler, however, always use abstract syntaxsemantic analysis and for some parts of
code generation.

4.1.1 Rules for Validity and Visibility

Programming languages often allow to use one identifier ifiderént program elements and to have
several declarations of the identifier. Thus a rule is ne#luicietermines to which defining occurrence
an applied occurrence refers. These rules are the ongalfdity and forvisibility.

Thescopeof the defining occurrences of an identifieis that part of a program in which an applied
occurrence of: can refer to this defining occurrence.

The visibility of a defining occurrences of an identifier can be restricteiisiscope by hiding
it. On the other hand there exist possibilities to make antitier explicitly visible even outside of its
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IfStat

\

A \ /\ /A

id op, iconst op, id iconst id iconst

(@) () @O ) © (Z) (1) (2) (2)

Fig. 4.2. representation of the abstract syntax

scope. These means are thalificationof components of structured types anditheort of identifiers
throughuse clauses.

The process oidentification of identifiersidentifies for each applied occurrence of an identifier
the defining occurrence that belongs to this applied ocooer@ccording to the rules of validity and
visibility of the language. We will see later that in progmaing languages that allow overloading of
identifiers an applied occurrence of an identifiers can tefseveral defining occurrences.

The validity and the visibility rules of a programming larage are strongly related to the type of
nesting of scopes that the language allows.

CosoL has no nesting of scopes; all identifiers are valid and \@®lierywhere. BRTRAN77 only
allows one nesting level, that is, no nested scopes. Proeeahd functions are all defined in the main
program. Identifiers that are defined in a block are only eésitithin this block. An identifier declared
in the main program is visible starting with its the declematbut hidden within procedure declarations
that contain a new declaration of the identifier.

Modern imperative and object-oriented languages suclAas R, AbA, C, C++, G and Ava and
functional programming languages allow arbitrarily deepting of blocks. The ranges of validity and
visibility of defining occurrences of identifiers are fixed &gditional rules. In det construct

let z = e in ¢

in OcaML the identifierz is only valid in thebodye, of thelet construct. Applied occurrences of
in the expressiom; refer to defining occurrence af in enclosing blocks. The scope of the identifier
x1,...,x, Of anlet-recconstruct
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let reczy =¢;and ... and z,, = ¢, in ¢

consists of the expressiors, e1, ..., e,. This rules makes it difficult to translate programs in one
pass; when translating a declaration the compiler may nefednnations about an identifier whose
declaration has not yet been processed AadL, ADA and C therefore havierward-declarations to
avoid this problem.

PROLOG has several classes of identifiers, which are charactebyettieir syntactic positions.
There is no hiding; so validity and visibility agree. The ndiiers of the different classes have the
following scopes:

e Predicates, atoms, and constructors have global vigipiliey are valid in the whole Prolog pro-
gram and in associated queries.
o Identifiers of clause variables are valid only in the clauselich they occur.

Explicit declarations exist only for predicates: Thesede®ned by the list of their alternatives.
Scoping in AvA, not yet translated

Conclusion

Not everywhere in the scope of a defining occurrence ah applied occurrence of refers to this
defining occurrence. If the defining occurrenceglisbal to the actual block that is, not declared in its
declaration part alocal (re)declaratioriodanhideit. It is then notdirectly visible However, there exist
several possibilities to make a not directly visible definaccurrence of an identifiersvisible within

its scope. The visibility rules of a programming languageedaine to which defining occurrence of
an identifier an applied occurrence may refer. Ektension of an identifidsy another identifier of a
construct containing the declaration makes it possibleferto a hidden defining occurrence. We have
seen how complex these rules may be at the example of thedgadivA .

e Some languages have directives that allow to make a hidd@mrdgoccurrence of an identifier
visible in a part of its scope, @gion, without extension of the identifier. We have seenithport
directive in AvA. These directives are part of the static and not of the dyoaeinantics. The
boundaries of a region are determined by associated opanuhglosing parentheses, such as the
with directive in ASCAL, are they are the boundaries of the directly enclosing mmgunit. In
JavA this is the file. Theusedirective in ADA lists identifiers of enclosing program units whose
declarations are thereby made visible. The visibility afgt identifiers stretches from the end of
theusedirective to the end of the enclosing program unit.

e If alanguage (and not only its implementation) knows thecemt separate compilation of program
units there exist directives to make declarations in seplgraompiled units visible. Each sepa-
rately compiled program unit can offer some of their dedlares for external reference. I
this can be controlled by the modifipublic, protected andprivate. In ADA a package (module)
offers the definitions of its public part, individual proeeds offer their formal parameters, These
identifiers are again associated with scopes enclosing@djrams that are linked together after
being separately compled. Théth directive in ADA makes identifiers visible that are offered by
separately compiled units and mentioned in\lith list.

In conclusion we record that the scope of the defining ocoegef an identifier, its range of validity, is
the part of a program in which the identifier can be used tostiee element named by the identifier.
This element is either directly visible or can be made vesibl

4.1.2 Checking the Context-Conditions

We will now sketch how compilers check the context-condisioWe consider the simple case of a
programming language with nested scopes, but without odithg.

The task is decomposed in two subtasks. The first subtaskst®ms checking whether identifi-
cation are declared and in identifying defining with appl@durrences. We call this tasleclaration
analysis This analysis is determined by the rules for validity ansihility of the programming lan-
guage. The second subtagipe checkingexamines whether the types of program objects confirm to
the rules of the type system. It may also infer types for disjéar which no types were given.



4.1 The Task of Semantic Analysis 115
Identification of Identifiers

The rules for validity and visibility determine in our singptase that in a correct program, exactly one
defining occurrence of an identifier belongs to each appl@digence of the identifier. The identifi-
cation of identifiers consists in linking each applied ocence to a defining occurrence or to find that
no such linking is possible or that more than one exist. Thalt®f this identification is later used for
type checking and possibly for code generation. It musttioee be passed on to subsequent compiler
phases. There exist several possibilities for the reptagen of the link between applied and defining
occurrence. Traditionally the compiler builds a so-caligthbol tablein which the declarative infor-
mation for each defining occurrence of an identifier is stoféais symbol table is frequently organized
similarly to the block structure of the program. This helpgjtickly reach the corresponding defining
occurrence starting from an applied occurrence.

Such a symbol table is not the result of the identificatiordehitifiers, but it support the identifica-
tion. The result of the identification consists in the esthiphent of the links from the nodes for applied
occurrences of an identifierto the node of defining occurrencexafabgespeichert ist.

Which operations must the symbol table offer? When the datiten analyzer meets a declaration
it must enter into the symbol table the identifier and a refeedo the declaration node in the parse tree.
Another operation must register the opening of a block, yetlzer the closing of a block. The latter
operation can delete the entries for the declarations otlibeed block from the symbol table. This
way, the symbol table contains at any point in time exactéyehtries for declarations of all actually
opened, but not yet closed blocks. When the declaratioryamameets an applied occurrence of an
identifier it searches the symbol table according to thesréde validity and visibility for the entry
of the corresponding defining occurrences. When it has fahiscentry it copies the reference to the
declaration node to the node for the applied occurrence.

Thus the following operations on the symbol table are resgliir

(@) create_symb_table creates an empty symbol table.
(b) enter_block registers the opening of a new block.
(c) exit_block resets the symbol table to the state before thedlargr _block
(d) enter_idid, decl_pt)  enters an entry for identifiéd into the symbol table.
This contains the reference to its declaration node,
which is passed idecl_ptr.
(e) search_idd) searches the defining occurrencéd@nd returns the reference
to the declaration node if it exists.
The last two operations (functions) work relative to the tggened block, the actual block.

Before we describe a possible implementation of the symdinét that is, of the procedures and
functions listed above we demonstrate their use by the deia analysis. We assume validity rules
as those for MA; the defining occurrence of an identifier is only valid stagtwith the end of the
declaration.

proc analyze_ded|k : node;
proc analyze_subtreggoot: node;

begin
for i := 1to #descséroot) do  (x #descsnumber of children)
analyze_dectoot.i) (* i-th child ofroot x)
od
end;
begin
case symijk) of (x label of k )
block: begin
enter_block;
analyze_subtreé¢s);
exit_block
end;

decl: begin
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analyze_subtreés);
foreach identifierid decl. heredo
enter_idid, 1 k)
od
end;
appl_id: (x applied occurrence of identifié )
store search_idid) ank;
otherwise:if k no leafthen analyze_subtre¢s) fi
od
end

The Ada rules for validity determine that in tdeclcase of theasestatement first all declarations
are recursively processed before the local declaratianem@tered. The modification of this algorithm
for ALGoL-like and RAscAL-like validity rules are left to the reader (see Exercisg.1.4

Checking Type Consistency

The check for type consistency can be performed in one betipipass over the expression tree. For
terminal operands, that are constants the type is fixed deatifiers the analysis obtains the type from
their declaration. For each operator one checks in a tabk Egyure 4.4), whether the types of the
operands match the requirements of the operator and whileh result type. If overloading is allowed,
the right operation is selected for overloaded operators.

If the programming language allows type conversions, fetance, from integer— real, then it
must be checked for each operator and each combination cdrmgheypes that don’t match whether the
operand types can be made to match by type conversions.

Implementation of the Symbol Table

The implementation of a symbol table must guarantee thaghech_idfunction finds the correct entry
for an identifier according to the validity rules out of seleroexisting entries.

A first solution could be a linear list afnter_block andenter_identries. New entries are attached
at the end, andxit_blockerases the laginter_identries including the laginter_blockentry.search_id
searches the list from the end and finds all actually validtifiers according to the Ada validity rules.
This linear lists is apparently administered in a stack-fi&kshion So, one can actually organizing it as
a stack.

Disadvantageous at this solution is the high effort$earch_id which linearly depends on the
number of declared identifiers. We can obtain a solution leigiarithmic search time if the entries for
each block are arranged in a binary search tree. The seanth with the search tree for the actual
block and continues with the search tree for the enclosiagialintil a defining occurrence is found, or
until it is clear that no such occurrence exists.

Under the assumption that each defined identifier has seygpiéd occurrencesearch_idshould
be made very efficient, if possible in constant time. This lsarachieved by using the following data
structure:

The entries of all currently valid defining occurrences aftealentifier are kept in a singly linked
list; each new definition is attached to the end of this ligtisTast entry is pointed to by a component
of an array that is indexed by the identifier. All entries bejimg to the same block are also linked in
a chain to support the proceduaeit_block A list head associated with this block points to this chain.
The set of these list heads can be managed in a stack-likefiash

Example 4.1.2
Figure 4.4 shows the symbol table for the program in FiguBeathd den program point labeled with
*. O

The implementation of the symbol-table operations is devid:
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Fig. 4.3.Nested scopes

decl. ofa, b
proc p (* forward declaration *)
proc ¢

proc p is

decl. ofa, c

decl. ofc, d

proc q is

decl. ofa, d 3

proc r

proc r is

decl. ofa, c

proc create_symb_table;
begin
create empty stack of block entries
end;

proc enter_block;
begin
push entry for new block onto stack
end,

proc exit_block;
begin
foreach declaration entry of the actual blodo
delete entry
od;
delete block entry from stack
end;

117
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Fig. 4.4. Symboltabelle zum Programm aus Abbildung 4.3. Die Verkeftder Eintr"age zu einem Block ist

nur f'ur Block 4 angegeben, da sonst das Diagramm zu un“ighdish w"urde. Sonst sind die “Adressen’der
K"astchen, die Zahlen 1 - 7 angegeben. Das nicht ausgef'Kllastchen in jedem Eintrag enth"alt jeweils den
Verweis auf den Unterbaum f'ur die Deklaration.

a — 1
1 4] [/ 3| [/ 1 /]y
c — 3 4 1 5|/
-
d — |4 3 1 1 3|/
p — |5 1 2|/
¢ — |6 1 4/
r  — |7 3| |4
4 3 7 1 6|/

proc enter_id( id: Idno; decl: T node);
begin
if there exists an entry fad in this block
then error(”double declaratiof)
fi;
create new entry witdecland no. of actual block;
attach this entry at the end of the linear list fdr,
attach this entry at the end of the linear list for this blpck
end,

function search_id( id: idno) 1 node;
begin
if list for id is empty
then error(”undeclared identifiéy
else return (value of decl field of first entry in list foid )
fi
end

4.1.3 Overloading of Identifiers

A symbol isoverloadedif it may have several meanings at some point in the progfdready math-
ematics knows overloaded symbols, for example, the aritlenoperators, which, depending on the
context, may denote operations on integral, real, or coxmlenbers, or even operations in rings and
fields. The early programming languages Fortran and Algbi@ followed the mathematical tradi-
tion and admitted overloaded operators. A type deternonas presented in the last section needs to
resolve the overloadingt should identify the right operation for an overloade@ogor depending the
types of its operands and possibly the expected type of thdtre
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Programming languages often allow overloading of use defidentifiers, such as procedure or
function names. In correct programs one applied occurrefee identifierz may correspond to several
defining occurrences af. A redeclaration of an identifier only hides an enclosing declarationzoff
both have the same type. A program is correct only if the "gqparonment” of each applied occurrence
allows the compiler to select exactly one defining occureeiite type environment of procedure and
function calls consists of the combination of the types efdltual parameters.

The visibility rules of Ada combined with the possibility taverload symbols lead to a hardly
understandable set of conflict-resolution rules for theesaghere identifiers are visible or are made
visible in different ways.

Example 4.1.3 (Ada program (Istvan Bach))
procedure BACH is

procedure put (x: boolean) is begin null; end;
procedure put (x: float) is begin null; end;
procedure put (x: integer) is begin null; end,

package x is
type boolean is (false, true);

function f return bool ean; -- (D1)
end Xx;
package body x is
function f return boolean is begin null; end;
end Xx;
function f return float is begin null; end, -- (D2)
use Xx;
begin
put (f); -+ (A1)
A: decl are
f: integer; -- (D3)
begi n
put (f); -- (A2)
B: declare
function f return integer is begin null; end; -- (D4)
begin
put (f); -- (A3)
end B;
end A
end BACH

The package declares in its public part two new identifiers, namely theetydentifierbool ean
and the function identifiefr. These two identifiers are made potentially visible aftergbmicolon by
the use directivaise x; (see after (D2)). Function identifiers in Ada can be overémhdrhe two
declarations of , at (D1) and (D2), have different ,parameter profiles* insticse different result
types. they are therefore both at program point (A1) (padén} visible.

The declaratioffi: i nt eger in the program unif (siehe (D3)) hides the outer declaration (D2)
of f , since variable identifiers in Ada cannot be overloadedtlisrreason the declaration (D1) is not
visible. Declaration (D4) of in program uniB hides declaration (D3), and since this one hides decla-
ration (D2), transitively also D2. Declaration (D1) potefly made visible through the use directive is
not hidden, but still potentially visible. In the contepait (f) (see (A3))f can only refer to declara-
tion (D4) since the first declaration piit uses a typehool ean, that is different from the result type
off in(D1). O

The process of selecting the right defining occurrences efloaded symbols is calleaverload
resolution The resolution of overloadings is performed after the fdieation of identifiers within
certain constructs of the language, that is, restricteatpoessions, (composed) identifiers etc.
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The resolution algorithm works on the representation ofAlda program as abstract parse tree.
Conceptually it uses four traversals of the expression tiesvever, the first can be merged with the
second and the third with the fourth. To formulate the aldponiwe introduce some notation: At each
nodek of the abstract parse tree

#desc$k)  returns the number of child nodes/of
symlik) returns the symbol labeling,

vis(k) returns the set of definitions sfymlgk) visible atk
opsk) returns the set of actual candidates for the overloaded slysyimli%), and
k. yields as usual théh child of k.

For each defining occurrence of an overloaded syrmpalith typet; x - -- x t,, — t let
rank(op) = m
res_tyfgop) = t
par_typop,i) = ti (1<i<m).

The two latter we extend to sets of operators. For each esipreg which overloading of operators
needs to resolved a type, the so-called a-priori type, isouded from its context.

proc resolve_overloadingroot: node, a_priori_type: type

func pot_res_typegk: node: set oftype;
(x potential types of the resut)
return {res_tyfdop) | op € opgk)}
func act_par_typesk: node, i:integer): set oftype;
return {par_typop, i) | op € opgk)}

proc init_ops
begin

foreach k&
opgk) := {op | op € vis(k) and rank(op) = #descék)}
od;
opgroot) := {op € ops(root) | res_tygop) = a_priori_typ}
end;

proc bottom_up_elintk: node;
begin
for i:=1to #descgk) do
bottom_up_elintk.i);
ops(k) := ops(k) — {op € ops(k) | par_typop,i) & pot_res_types.i)}
(* remove the operators, who#l parameter type does not
match the potential result types of tfith operand)
od,
end,

proc top_down_elintk: node;
begin
for i :=1to #descgk) do
ops(k.i) := ops(k.i) — {op € ops(k.i) | res_tydop) & act_par_typeg:,i)};
(* remove the operators, whose result type does not match
any type of the corresponding parametgr
top_down_elirfk.7)
od;
end;

begin
init_ops;
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bottom_up_elirfroot);

top_down_elirfroot);

check whether now alipssets have exactly one element; otherwise report an error
end

It looks like the bottom-up elimination and the top-dowmeghation do the same thing. This is
almost correct. Figure 4.5 shows a combinatioropf- andop, labeled nodes. Each node is associ-
ated with the set of potential definitions of the operatortt®n-up elimination possibly eliminates
candidates from the set of definitionsagf; , top-down elimination from the set of definitionsap,.

Fig. 4.5.The elimination of potential operators in two directionsttbm up and top down

@ (X

bottom up—Elimination

¢ top down—Elimination

@ (..X..}

4.2 Attribute Grammars

We have described tasks to be performed by semantic an@lySisction 4.1. In line with our pre-
sentation so far it would be nice to also have a descriptionhaeism for these tasks, from which
implementations could be generated.

Remember the algorithm for overload resolution in Sectich3} in particular the two passes
bottom-up elimination and top-down elimination. One stéaottom-up elimination at some node
k removes from the seips(k) of potential operators dt all those where the type of thiéh parameter
does not agree with the result type of any potential opeedtoodek.;. Hence, the new set of potential
operators at node is determined based on the set of potential operators ahiltren of k. One step
of top-down elimination at some noderemoves operator candidatestatwhose result type does not
agree with any of the parameter types of paramietéthe operator candidates/atHere, the set of po-
tential operators dt.i is computed based on the set of potential operatdtsHbe overload-resolution
algorithm needs this flow of information in both directions.

An elegant and powerful description mechanism for taslestilese arattribute grammarsThey
extend context-free grammars by associasitigbuteswith the symbols of the underlying context-free
grammar. These attributes are containers for static seeriafarmation. Their values are computed by
computations performed on trees, with computations teangrthe trees as needed.

The set of attributes of a symbal is denoted by4(.X ). With each attribute is associated a type
Ta, Which fixes the set of possible values for the instanceseéttribute.

Consider a productiop: Xy — X5 ... X with £ > 0 symbols occurring on the right side. To
tell the different occurrences of symbols in producticapart, we number these from left to right. The
left side nonterminalX, will be denoted byp[0], theith symbolX; on the right side op by p[i] for
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i1 =1,...,k. The attributez of a symbolX has arattribute occurrencet each occurrence of in a
production. The occurrence of an attributat a symbolX; is denoted by/[i].a.

Attributes also havelirections which can be better understood, if we think of productiopliap
cations in parse trees. The attributes of a symbaire eithelinherited or synthesizedThe values of
(instances of) synthesized attributes at a node are cochfnatie (values of attribute instances in) the
subtree at this node. The values of (instances of) inheaititbutes at a node are computed from the
context of the node, see Figure 4.6. All the attribute instsrwith ingoing yellow edges are computed
within the production. These are the occurrences of syitb@sittributes of the left side of the produc-
tion and the occurrences of inherited attributes of thetréidte of productions. Together we call them
defining occurrencesf attributes in this production. All other occurrence dfiatites in the produc-
tion are calledapplied attribute occurrenceg&ach production hasemantic ruleswhich describe how
the values of defining attribute occurrences in the prodaciire computed from the values of other
attribute occurrences of the same production. So, semanés need to be given for each inherited
attribute occurrence on the right side of a production arth sginthesized attribute occurrence on the
left side. The set of inherited and synthesized attributemattribute grammar are denoted byand
S, resp. and the set of inherited and synthesized attribdtasspmbolsX correspondingly byZ (X)
andS(X).

b
00

0x00- 000

T f

Fig. 4.6. An attributed node in the parse tree with its attributed sasors. Instances of inherited attributes are
drawn as boxes to the left of syntactic symbols, instancegrthesized attributes as boxes to the right of symbols.
Red (darker) arrows show the information flow into the prdiiucinstance from the outside, yellow (lighter)
arrows symbolize functional dependences between attrilmstances that are given through the semantic rules
associated with the production.

In our examples we write the semantic rules in ana®IL -like programming language.

PopularL R parsers such asAtc and BsoN offer a restricted attribute mechanism: Each symbol
of the grammar has one associated attribute, and to eacligiiod there is one semantic rule that
describes how the value of the attribute occurrence on thsitie is computed from the values of the
right-side attribute occurrences.

Example 4.2.1 Consider a context-free grammar with the nontermial¥’, F' for arithmetic expres-
sions. The set of terminals consists of parentheses, apsrand the symbolar andconst, represent-
ing int variables and constants. The nonterminals have an a#ribut that will hold the trees for the
words that have been derived from them.

The productions of the grammar are extended by semantis asléollows: Different occurrences
of the same symbol are indexed.

Example 4.2.2
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pr: E—E+T
E|[0].tree = Plus (E[1].tree, T.tree)
pe: E—T
E.tree = T'.tree
ps: T — TxF
T[0].tree = Mult (T'[1].tree, F.tree)
py: T — F
T.tree = F'.tree
ps: F — const
F.tree = Int (const.val)
pe: F — var
F.tree = Var (var.id)
pr: F—(E)
F.tree = E.tree
O

The trees are built with the constructdtiais, Mult, Int, Var. Further, we assume that the symbaohst
has an attributea/, which will hold the value of the instances odnst, and the symbolar has an
attributeid, which will hold the unique codes for the instances&f 0O

If the semantic rule for a defining attribute occurrence asesttribute occurrence as argumentthere
is afunctional dependendeom the argument attribute-occurrence to the definingpalte occurrence.

Attributes of symbols labeling nodes of parse trees aredaltribute instancesThey exist at
compile time after syntactic analysis has produced theefiees.

The functional dependences between attribute occurretetesmine in which order the attribute
instances at nodes of the parse tree may be evaluated. Angsiofesemantic rules need to be evaluated
before the rules can be applied to compute the value of tleeiassd attribute (instance). There exist
some constraints on the functional dependences to enatrth#iocal semantic rules of the attribute
grammar for the attribute occurrences in the productionsbeacomposed to global computation of
all attribute instances in a parse tree. The values of at&imstances at the individual nodes of the
parse tree are computed by a global algorithm, which is geeérfrom the attribute grammar, and
which at each node adheres to the local semantic rules of the production appplie. The theme of
this chapter is how such an algorithm can be automaticathegeed from a given attribute grammar.

An attribute grammar is imormal formif all defining attribute occurrences in productions only
depend on applied occurrences in the same productionst Expidicitly stated otherwise we assume
that attribute grammars are in normal form.

We have admitted synthesized attributes for terminal sysnicthe grammar. In compiler design,
attribute grammars are used to specify semantic analyisis phase follows lexical and syntactic anal-
ysis. Typical synthesized attributes of terminal symboésvalues of constants, external representations
or unigue encodings of names, and the addresses of stristpes. The values of these attributes are
delivered by the scanner, at least if it is extended by seméntctionality. So, in compilers synthe-
sized attributes of terminal symbols play an important.rAlso inherited attribute instances at the root
of the parse tree have no semantic rules in the grammar towertipeir values. However, the compiler
may have some use for them and therefore will initialize them

4.2.1 The Semantics of an Attribute Grammar

The semantics of an attribute grammar determines for eade et of the underlying context-free
grammar which values the attributes at each nodeshould have.

For each node: in ¢ let symb(n) the symbol of the grammar labeling If symb(n) = X then
n is associated with the attributes (X ). The attributen € A(n) of the noden addressed byt.a.
Furthermore we need an operator to navigate from a node &udsessors. Let,,...,n; be the
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sequence of successors of nodén parse tree. n[0] denotes the node itself, andn[i] = n; for
i =1,..., k denotes théthn successor of in the parse tree

If Xo = symb(n) and, if X; = symb(n;) fori = 1,..., k are the labels of the successarsof n
thenXy, — X; ... X} is the production of the context-free grammar that was ag@t node:.. The
semantic rules of this productignprovide the method to compute values of the attributes atdldes
n,ni,...,ng. The semantic rule

plil.a = f(pli1].a1,. .., plir].ar)

for the productiorp becomes the semantic rule
nlil.a = f(nli1).a1,...,nlir).a)

for the noden in the parse tree. We assume that the semantic rules spetEffunctions. Lett be a
parse tree and
V(t) = {n.a | nnodeint,a € A(symb(n))}

be the set of all attribute instancestinThe subseV;, (¢) of inherited attribute instances at the rootl
and of synthesized attribute instances at the leaves deel¢hé set ofnput attribute instancesf ¢.

Assigning values to the input attribute instances and mistéing the semantic rules of the attribute
grammar at all nodes inhproduces a system of equations in the unknowmsthat has for all but the
input attribute instances exactly one equation. AES(¢) this attribute equation system.AES(¢) is
recursive (cyclic) it can have several solutions or no sofutlF AES(¢) is not recursive there exists
for assignment of the input attribute instance exactly one attribute assignt for the parse trees
agreeing on the input attribute instances wittand satisfying all equations. The attribute grammar
is therefore calledvellformed if the system of equation8ES(¢) is not recursive for any parse tree
of the underlying context-free grammar. In this case we @dfie semantics of the attribute grammar
as the function mapping each parse ttesnd each assignmentof the input attribute instances to
an attribute assignment that agrees on these avitind that additionally satisfies all equations of the
systemAES(t).

4.2.2 Some Attribute Grammars

In the following we present some attribute grammars thateseksential subtasks of semantic anal-
ysis. The first attribute grammar shows how types of expoesstan be computed using an attribute
grammar.

Example 4.2.3 (Type checking)The attribute grammat G ;... beschreibt die type determination for
expressions containing assignments, nullary functioperatorst, —, x, / and variable and constants
of typeint or floatin a C-like programming language with explicit type dectamas for variables. The
attribute grammar has an attributg for the nonterminal symbol&', 7" and F' and for the terminal
symbolconst, which may take valuekt and Float. This grammar can be easily extended to more
general expressions with function application, composetgction in composed values, and pointers.
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E—var'=" E
E[1].env = E[0].env
E[0].typ = EI0].env var.id
E[0].ok = letx =var.id
in let 7 = E[0].env
in (7 # error) A (E[1].type C 1)

E— FaopT E—T
E[l]).env = E[0].env T.env = E.env
T.env = E[0].env E.typ = T.typ
E[0].typ = E[1].typ U T.typ E.ok =T.ok

E[0].0k = (E[1].typ C float) A (T.typ C float)

T — T mop F T — F
T[1].env = T[0].env F.env = T.env
F.env T1[0].en T.typ = F.typ
T10].ty 1]. typI_IFtyp T.ok = F.ok

T
[O].ok = (T[l].typ C float) A (F.typ C float)

F — (E) F — const

FE.env = F.env F.typ = const.typ

F.ityp = E.typ F.ok = true

F.ok = FE.ok

F — var F — var ()

F.typ = F.env var.id F.typ = (F.env var.id) ()
F.ok = (F.env var.id # error) F.ok = match F.env var.id

with 7 () — true
| _ —false

The attributeenv of the nonterminalé’, " and £ is inherited, all other attributes of grammar ..
are synthesized.

The semantic rules in this grammar are not necesstatil functions. For instance, they are not
total if an identifier is used, but not declared in a programthis case, an entry for this identifier would
be searched for in the symbol takev, Also, the right side of the semantic rule to the third prddhrc
produces the valulnt for the operatof+' only if the attribute occurrenc@[1].typ and F.typ both
have the valuént. Otherwise it is not defined.

If a semantic rule is undefined for particular arguments ihisnderstood as returning an error
value. No operator is defined for such an error value. Thesethor value propagates. The compiler
would reject a program with error values in attributesl

We use a convention for writing attribute grammars to redbeawvriting effort caused mainly by chain
productions:

If no semantic rule for a defining occurrence is given thefitigfunction as semantic rule is assumﬁd.

Nat"urlich muss im Fall der identischen "Ubergabe an eiretditgtes attribute der linken Seite genau
ein gleichnamiges abgeleitetes attribute auf der rechégte &uftreten. Die folgenden Beispiele be-
nutzen diese Konvention — zumindest fir Regdln— « X 3, deren rechte Seite nur ein Symbdl
enthalten, dessen Attribute mit den Attributen der linkeite&sA Ubereinstimmen.




