Reinhard Wilhelm, Helmut Seidl, Sebastian Hack

Compiler Design

Syntactic and Semantic Analysis

November 11, 2011

Springer

Contents

The Structure of Compilers e 1
1.1 Subtasks of compilation 2
1.2 Lexical Analysis e 2
1.3 T SCIrEENET . .t e e e e e e 3
1.4 Syntactic AnalysSiS o e 4
1.5 SemantiC ANalysSiSot e 5
1.6 Machine-Independent Optimization 5
1.7 Memory AllOCatioNo s 6
1.8 Generation of the Target Programt 6
1.9 Specification and Generation of Compiler ComponentS.......ttt 8
1,20 LIEEIaAtUIE ottt e e e et e e e e e 9
Lexical ANalySiS .. oo e 11
2.1 TheTaskof Lexical AnalysSis.ot e 11
2.2 Regular Expressions and Finite-State Machines 12
2.2.1 Words and Languagesouitieti e e 12
2.3 Language for the Specification of Lexical Analyzers 23
2.3.1 CharaCter Classesttt e e 23
2.3.2 Non-recursive Parentheses.t e 24
2.4 Scanner GENEratioN oottt et 24
2.4.1 CharaCter Classesottt e e 24
2.4.2 AnImplementation of thentil-Construct 25
2.4.3 Sequences of regular eXpressionsot i 26
2.4.4 The ImplementationofaScanner............ ... oo, 28
2.5 The SCIrBENET .. e 29
2.5.1 Scanner States.ttt e 30
2.5.2 Recognizing Reserved Words ia i 31
2.6 EXEBICISES . ..ttt e 32
2.7 LI Erature . ..ot e e e 34
SyNtactic ANalySiS. . . . oo e 35
3.1 The Task of Syntactic Analysist e 35
3.2 FOUNAALIONS . .ot e 37
3.2.1 Context-free Grammarsttt e 37
3.2.2 Productivity and Reachability of Nonterminals 42
3.2.3 Pushdown Automata ...t 45
3.2.4 The Item-Pushdown Automaton to a Context-Free Gramma. 47
3.2.5 first-andfollow-Sets e 51
3.2.6 The Special Cadigst; andfollow;o 56

3.2.7 PureUnion Problems 58

\ Contents
3.3 Top-dowRSyntax AnalysSiS.o 60
3.3.1 INrOdUCHION v e 60
3.3.2 LL(k): Definition, Examples, and Propertiescouu.oo.... 62
3.3.3 Left RECUISION ... e 66
3.3.4 StrongLL(k) Parsers....... ... 69
3.3.5 LL Parsers for Right-regular Context-free Grammars. 71
3.4 Bottom-up Syntax ANalysSisot 79
341 INrOdUCHION . . . o vttt 79
3.4.2 LR(E) Parsers.o e e 80
3.4.3 LR(k): Definition, Properties,and Examplesccuu....... 89
3.4.4 Fehlerbehandlung R parsern ... 98
3.5 LiteraturhinWeiSeo 104
3.6 "UDBUNGEN . . 104
4 SemantiC ANalYSiS . ..o e 109
4.1 Aufgabe der semantischen Analyse. o 109
4.1.1 G'"ultigkeits- und Sichtbarkeitsregeln....... ... i 113
4.1.2 "Uberpr'ufung der Kontextbedingungen, 117
4.1.3 "Uberladungvon Bezeichnern i immmm i, 121
4.2 TYPINfEreNZ . . o 124
4.3 AttributgrammatikKen 143
4.3.1 Die Semantik einer Attributgrammatik i 146
4.3.2 Einige Attributgrammatiken 147
4.4 Die Generierung von Attributauswertern oo e 153
4.4.1 Bedarfsgetriebene Auswertung der Attribute 153
4.4.2 Statische Vorberechnungen fur Attributauswerter...................... 154
4.4.3 Besuchsgesteuerte Attributauswertungo i 160
4.4.4 Parsergesteuerte Attributauswertung oo i L ... 164
A5 UDUNGEN . e 170
4.6 LiteratUrhinWeiSeo 171
[T > | 173

REfEIENCES . . .o o 173

1

The Structure of Compilers

Our series of books treats the compilation of higher prognarng languages into the machine lan-
guages of virtual or real computers. Such compilers aree]Jazgmplex software systems. Realizing
large and complex software systems is a difficult task. Wapecial about compilers such that they
can be even implemented as a project accompanying a coropilese? A decomposition of the task
into subtasks with clearly defined functionalities and olederfaces between them makes this, in fact,
possible. This is true about compilers; there is a more & $¢gndard conceptual compiler structure
composed of components solving a well-defined subtask ofdingpilation task. The interfaces be-
tween the components are representations of the inputgrogr

The compiler structure described in the following i€@nceptualstructure. i.e. it identifies the
subtasks of the translation ofsaurcelanguage into @argetlanguage and defines interfaces between
the components realizing the subtasks. The concrete ectinie of the compiler is then derived from
this conceptual structure. Several components might bébead if the realized subtasks allow this.
But a component may also be split into several componertig ifé¢alized subtask is very complex.

A first attempt to structure a compiler decomposes it inte¢gfatomponents executing three consec-
utive phases:

1. Theanalysis phaserealized by thd=rontend It determines the syntactic structure of the source
program and checks whether the static semantic constraiatsatisfied. The latter contain the
type constraints in languages with static type systems.

2. Theoptimizationandtransformationphase, performed by what is often called WMieldleend The
syntactically analysed and semantically checks programarsformed bysemantics-preserving
transformations. These transformations mostly aim at @avipg the efficiency of the program by
reducing the execution time, the memory consumption, océimsumed energy. These transforma-
tions are independent of the target architecture and malsthyindependent of the source language.

3. Thecode generation and the machine-dependent optimizat@se, performed by thgackend
The program is being translated into an equivalent progmarthé target language. Machine-
dependent optimizations might be performed, which expleduliarities of the target architecture.

This coarse compiler structure splits it into a first phad@ctvdepends on the source language, a third
phase, which depends only on the target architecture, agcbad phase, which is mostly independent
of both. This structure helps to adapt compiler componentetv source languages and to new target
architectures.

The following sections present these phases in more dd&ilbompose them further, and show
them working on a small running example. This book descrthesanalysis phase of the compiler.
The transformation phase is presented in much detail in theme Analysis and Transformation
The volumeCode Generation and Machine-oriented Optimizatimvers code generation for a target
machine.

2 1 The Structure of Compilers

1.1 Subtasks of compilation

Fig. 1.1 shows a conceptual compiler structure. Compitaalecomposed into a sequence of phases.
The analysis phase is further split into subtasks as thismvelis concerned with the analysis phase.
Each component realizing such a subtask receives a repaearof the program as input and delivers
another representation as output. The format of the ougmresentation may be different, e.g. when
translating a symbol sequence into a tree, or it may be the shnthe latter case, the representation
will in general be augmented with newly computed informatibhe subtasks are represented by boxes
labeled with the name of the subtask and maybe with the nartie@hodule realizing this subtask.

We now walk through the sequence of subtasks step by ste@atbaze their job, and describe the
change in program representation. As a running example waaer the following program fragment:

int a, b;
a = 42;
b=axa—T,

where’ =’ denotes the assignment operator.

Quellprogramm als Zeichenfolge

!

lexikalische Analyse 1

Scanner
Symbolfolge

Optimierung

Sieben
Sieber
dekorierte Symbolfolge

syntaktische Analyse

mw<rmr>»Z2>»

Parser
Syntaxbaum

Codeerzeugung

moumI-—a4zZ2<Wm

semantische Analyse l

dekorierter Syntaxbaum

Zielprogramm

Fig. 1.1. Structure of a compiler together with the program repregents during the analysis phase.

1.2 Lexical Analysis

The component performing lexical analysis of source pnogres often called thecanner This com-
ponen reads the source program represented a sequenceaaftereamostly from a file. It decomposes
this sequence of characters into a sequence of lexicalafititi® programming language. These lexical
units are calledymbolsTypial lexical units are keywords such #s else, while or switch and spe-
cial charactes and character combinations such,as=,! =, <=,>=,<,>,(,),[,],{, } or comma
and semicolon. These need to be recognized and convertecbirfesponding internal representations.
The same holds for reserved identifiers such as names of tyg&sint, float, double, char, bool

or string, etc. Further symbols are identifier and constants. Exagripleidentifiers arevalue4?2, abc,

1.3 The Screener 3

Myclass, x, while the character sequenc 3.14159 and’’HalloWorld!” represent constants. Some-
thing special to note is that there are, in principle, aabity many such symbols. However, they can be
categorized into finitely mangiassesA symbol class consists of symbols that are equivalentraasfa
the syntactic structure of programs is concerned. Idergifiee an example of such a class. Within this
class, there may be subclasses such as type constructocainLQor variables in ROLOG, which are
written in capital letters. In the class of constains,constants can be distinguished from floating-point
constants andtring-constants.

The symbols we have considered so far bear semantic intatijpres and need, therefore, be consid-
ered in code generation. However, there are symbols wittemgantics. Two symbols need a separator
between them if their concatenation would also form a synfbath a separator can be a blank, a new-
line, or an indentation or a sequence of such characterh. Kucalled white space can also be inserted
into a program to make visible the structure of the program.

Another type of symbols, without meaning for the compilert belpful for the human reader, are
comments and can be used by software development tools. ilasitype of symbols areompiler
directives(pragmasg. Such directives may tell the compiler to include partiedibraries or influence
the memory management for the program to be compiled.

The sequence of symbols for the example program might loééllasvs:

Int(”l‘nt”) Sep(// //) Id(//a//> Com(//,//> Sep(// //) Id(//b//) Sem(//;//> Sep(//\n//>
Id(”a”) Bec("=") Intconst("42") Sem(";"") Sep("\n")
Id(/lbl/) Bec(/I:I/) Id(l/all) Mop(ll*/l) Id(/lall) Aop(ll_ll) |ntCOnSt(”7H) Sem(ll;ll) Sep(ll\nll)

To increase readability, the sequences was brolen ints #ineording to the original program structure.
Each symbol is represented with its symbol class and theérgulpsepresenting it in the program. More
information may be added such as the position of the stritiggrnput.

1.3 The Screener

The scanner delivers a sequence of symbols to the scredresre Bre substrings of the program text
labeled with their symbol classes. It is the task of the sweeéo further process this sequence. Some
symbols it will eliminate since they have served their prggas separators. Others it will transform into
a different representation. More precisely, it will perfothe following actions, specific for different
symbol classes:

Reserved symbolsthese are typically identifiers, but have a special meamiriigeé programming lan-
guage. e.ghegin, end, var, int etc.

Separators and commentSequences of blanks and newlines serve as separators hetyrabols.
They are of not needed for further processing of the prognagdncan therefore be removed.. An
exception to this rule are some functional languages, eagKHLL, where indentation is used to
express program nesting. Comments will also not be neetkddiad can be removed.

Pragmas: Compiler directives (pragmas) are not part of the prograneyTwill separately passed on
to the copmpiler.

Other types of symbols are typically preserved, but theitui@ representation may be converted into
some more efficient internal representation.

Constants: The sequence of digits as representation of number coesgacdnverted to a binary rep-
resentationString-constants are stored into an allocated object.Awvn Jmplementations, these
objects are stored in a dedicated data structureSthieg Pool The String Pool is available to the
program at run-time.

Identifier: Compilers usually do not work with identifiers representsdstting objects. This repre-
sentation would be too inefficient. Rather, identifiers avdexl as unique numbers. The compiler
needs to be able to access the external representationniifiels, though. For this purpose, the
identifiers are kept in a data structure, which can be effilji@udressed by their codes.

3

Syntactic Analysis

3.1 The Task of Syntactic Analysis

The parser realizes thgyntactic analysisf programs. Its input is a sequence of symbols as produced
by the cmbination of scanner and screener. Itis its job totiflethe syntactic structure in this sequence
of symbols, that is the composition of syntactic units frotfmes units.

Syntactic units in imperative languages are variablesiesgions, declarations, statements and se-
guences of statements. Functional languages have vajablgressions, patterns, definitions and dec-
larations. Logic languages such as [sc Prolog have vasgatdams, goals, and clauses.

The parser represents the syntactic structure of the immgram in a data structure that allows
the subsequent phases of the compiler to access the indiyidogram components. One possible
representation is thearse tree The parse tree maz later be decorated with more informabont the
program. Transformation may be applied to it, and code farget machine can be generated from it.

For some languages, the compilation task is so simple tlograms can be translated in one pass
over the program text. In this case, the parser can avoidahstiuction of the intermediate represen-
tation. The parser acts as main function calling routineséonantic analysis and for code generation.

Many programs that are presented to a compiler containgmaany of them syntax errors. Syntax
errors consist in violations of the rules for forming valibbgrams. The compiler is expected to ade-
quately react to errors. It should at least attempt to lotteteerror precisely. However, often only the
localization of the error symptom is possible, not the l@zdion of the error itself. The error symptom
is the position where no continuation of the syntactic asialis possible. The compiler should not give
up after the first error found, but continue to analyze thé séthe program and maybe detect more
errors.

The syntactic structure of the programs written in some gogning language can be described by
a context-free grammar. There exist methods to autombtipaherate a parser from such a description.
For efficiency and unambiguity reasons, parsing methodsféea restricted to deterministically ana-
lyzable context-free languages. For these, several atimmathods for parser generation exist. The
parsing methods used in practice fall into two categot@s,down andbottom-upparsing methods.
Both read the input from left to right. The differences in thay they work can be best made clear by
regarding how they construct parse trees.

Top-down parserstart the syntactic analysis of a given program and the oactgin of the parse
tree with the start symbol of the grammar and with the rooheffiarse tree labelled with that symbol.
Top-down parser are callgatedictiveparser since they make predictions about what they expé&atto
next in the input. They then attempt to verify the predictigncomparing it with the remaining input.
The first prediction is the start symbol of the grammar. Itssinat the parser expects to find a word for
the start symbol. Let us assume that a prefix of the preditdiaiready confirmed. Then there are two
cases:

e The non-confirmed part of the prediction starts with a nanteal. The top-down parser will then
refine its prediction by selecting one of the alternativethisf nonteminal.

36 3 Syntactic Analysis

e The non-confirmed part of the prediction starts with a teahsgymbol. The top-down parser will
then compare this with the next input symbol. If they agreméians that another symbol of the
prediction is confirmed. Otherwise, the parser has detexteziror.

The top-down parser terminates successfully when the whplg has been predicted and confirmed.

Bottom-up parserstart the syntactic analysis of a given program and the oactgin of the parse
tree with the input, that is, the given program. They attetogliscover the syntactic structure of longer
and longer prefixes of the input program. To do this they gtteimreplace occurrences of right sides
of productions by their left-side nonterminals. Such aaepment is called geduction If the parser
cannot perform a reduction if doesshift, that is, it reads the next input symbol. These are the only
two actions a bottom-up parser can perform. It is, therefcaled shift-reduceparser. The analysis
terminates successfully when the parser has reduced thi pmpgram by a sequence shift and
reducesteps to the start symbol of the grammar.

The Treatment of Syntax Errors

Most programs that are submitted to a compiler are erron@&dasy contain syntax errors. The com-
piler should, therefore, treat ti@rmalcase, namely the erroneous program adequately. Lexicaberr
are rather local. Syntax errors, for instance in the paesighstructure of a program, are often difficult
to diagnose. This chapter covers required and possibl¢éimaado syntax errors by the parser. There
are essentially four different types of reaction to syntagns:

1. The erroris localized and reported;

2. The error is diagnozed;

3. The error is corrected;

4. The parser gets back into a state in which it can possilicti&urther errors.

The first alternative is absolutely required. Later stadgesecompiler assume that they are only given
syntactically correct programs in the form of syntax trdése programmer needs to be informed about
syntax errors in his programs. There exist, however, twaoiiggnt problems: Firstly, further syntax
errors can remain undetected in the vicinity of a detecteat.€8econd, the parser detects an error when
it has no continuation out of its actual configuration undher mext input symbol. This is, in general,
only the errosymptomnot the error itself.

Example 3.1.1 Consider the following erroneous assignment statement:

a=ax(b+cxd ;
1

error symptom?)’ is missing

There are several potential errors: Either there is an extea parenthesis, or a closing parenthesis is
missing after or afterd. These three corrections lead to programs with differergnitey. O

At errors of extra or missing parentheses such as §€gin, end, if, etc., the position of the
error and the position of the error-symptom can be far appaet.practically relevant parsing methods,
LL(k)- andLR(k) parsing, presented in the following sections, haveviable-prefixproperty.

When the parser for a context-free gramrdras analyzed the prefixof a word without announcing
an error then there exists a wordsuch that.w is a word ofG.

Parsers possessing this property report error and errquteyns at the earliest possible time. We have
said above that, in general, the parser will only discoveeior symptom, not the error itself. Still,
we will speak oferrorsin the following. In this sense, the discussed parsers partoe first two listed
actions: they report and try to diagnose errors.

Example 3.1.1 shows that the second action is not easily.done

The parser can attempt a diagnosis of the error symptomolildhat least provide the following
information:

3.2 Foundations 37

e the psition of the error in the program,
e a description of the parser configuration, i.e., the curseate, the expected symbol, and the found
symbol.

For the third listed action, the correction of an error, tlaesgr would need to know the intention of
the programmer. This is, in general, impossible. Somewtatmealistic is the search for a globally
optimal error correction. To realize this, the parser i®githe capability to insert or delete symbols in
the input word. Theglobally optimalerror correction for an erroneous input wards a wordw’ that
is obtained fromw by a minimal number of such insertions and deletions. Sucthods have been
proposed in the literature, but have not been used in peadtie to the necessary effort.

Instead, most parsers do only local corrections to havedhsep move from the error configuration
to a new configuration in which it can at least read the nexitispmbol. This prevents the parser from
going into an endless loop while trying to repair an error.

The Structure of this Chapter

Section 3.2 presents the theoretical foundations of syatelysis, context-free grammars and their
notion of derivation and pushdown automata, their acceptrspecial non-deterministic pushdown
automaton for a context-free grammar is introduced thaigeizes the language defined by the gram-
mar. Deterministic top-down and bottom-up parser for tremgnar are derived from this pushdown
automaton.

Sections 3.3 and 3.4 descritmp-down andbottom-upsyntax analysis. The corresponding gram-
mar classes are characterized and parser-generation deedh® presented. Error handling for both
top-down and bottom-up parsers is described in detail.

3.2 Foundations

We have seen that lexical analysis is specified by regulaesspns and implemented by finite-state
machines. We will now see that syntax analysis is specifiatbbyext-free grammars and implemented
by pushdown automata.

Regular expressions are not sufficient to describe the syfifarogramming languages since they
cannotembedded recursiaas they occur in the nesting of expressions, statementdlaokis.

In Sections 3.2.1 and 3.2.3, we introduce the needed notibosat context-free grammars and
pushdown automata. Readers familiar with these notionsskgnthem and go directly to Section
3.2.4. In Section 3.2.4, a pushdown automaton is introdfimed context-free grammar that accepts
the language defined by that grammar.rt.

3.2.1 Context-free Grammars

Context-free grammars can be used to describe the synsaeizture of programs of a programming
language. The grammar describes what the elementary cantsoof programs are and how pieces of
programs can be composed to form bigger pieces.

Example 3.2.1 A section of a grammar to describe a C-like programming laggumight look like
follows:

38 3 Syntactic Analysis

(stat) — (if _stat) |
(while_stat) |
(do_while_stat) |

(exp) ;|
o
{ (stats) }
(if _stat) — if ((exp)) else (stat) |
if ((exp)) (stat)
(while_stat) — while ((exp)) (stat)
(do_while_stat) — do (stat) while ((ezxp));
(eap) ~ {assign) |
(call) |
Id |
(call) — Id ({exps)) |
(eap)()
(assign) — 1d'=" {exp)
(stats) — (stat) |
(stats) (stat)
(exps) - (exp) |

(exps), (exp)

The nonterminal symbo(stat) generates statements. We will use the meta-chara¢tecombine
several alternatives for one nonterminal.

According to this section of a grammar, a statement is eghelif -statement, avhile-statement,
a do-whilestatement, an expression followed by a semicolon, an estatgment, or a sequence of
statements in parentheses.

if -statements in which thelsepart may be missing. They always start with the keywiérdol-
lowed by an expression in parentheses, and a statementstéhésnent may be followed by the key-
wordelse and another statement. Further productions describeatole- anddo-while statements and
expressions are constructed. For expressions, only sossépmalternatives are explicitly given. Other
alternatives are indicated by ... O

Formally, acontext-free grammais a quadruplez = (Vi, Vi, P,S), whereVy, Vp are disjoint
alphabetsVy is the set ohonterminalsVy is the set oterminals P C Viy x (Vy U Vp)* is the finite
set ofproduction rulesandsS € Vy is thestart symbal

Terminal symbols (in short: terminals) are the symbols frehich programs are built. While we
spoke of alphabets aharactersin the section on lexical analysis, typically ASCII or Urode char-
acters, we now speak of alphabetssgfbolsas they are returned from the scanner or the screener.
Such symbols are reserved keywords of the language, idaatitir symbol classes comprising sets of
symbols.

The nonterminals of the grammar stand for sets of words #rabe generated from them according
to the production rules of the grammar. In the example grand2al, they are enclosed in angle brack-
ets. A production rules (in short: productidi, «) in the relationg” describes possible replacements:
an occurrence of the left sidéin a word = ;1 Ay can be replaced by the right side= (Vi UVy)*.

In the view of atop-downparser, a new word’ = v, ays is producedor derivedfrom the wordg.

A bottom-upparser interprets the producti¢a, «) as a replacement of the right sideby the left
side A. Applying the production to a word" = ~; ay, reduceshis to the word3 = 1 Avs.

We introduce some conventions to talk about context-fraengnarsG = (Vi, Vr, P, .S). Capital
latin letters from the beginning of the alphabet, elgB, C are used to denote nonterminals frofg;
capital latin letters from the end of the alphabet, &gY, Z denote terminals or nonterminals. Small
latin letters from the beginning of the alphabet, @.g, ¢, . . ., stand for terminals froriv;; small latin

3.2 Foundations 39

letters from the end of the alphabet, likev, w, x, y, z, stand for terminal words, that is, elements from
V.}; small greek letters such as 3, v, ¢, v stand for words frontVy U Vi)*.

The relationP is seen as a set of production rules. Each eleriéndv) of this relation is, more
intuitively, written asA — «. All productions A — a1, A — aas,..., A — «, for a nonterminald
are combined to

A—-oay|a|...]an

. Theay, as, ..., a, are called thalternativesof A.
Example 3.2.2 The two grammaré;/, andG; describe the same language:
Go ={E,T,F},{+,*,(,),Id}, Py, E) whereP, is given by:
E - E+4+T|T,
T — TxF|F,
F — (BE)|Id
G1=({E},{+,%(,),ld}, P, E) whereP is given by:
E—-FE+E|ExE|(E)|Id
O
We say, aworg directly produces wordy according ta&, written asp = Yif o =0Ar,0 = ocar

holds for some words, = and a productiodl — « € P. A word ¢ produces wordi according to&,
or isderivablefrom ¢ according ta=, written asp % 1, if there is a finite sequenc®), ¢1, - . . ¢n,

(n > 0) of words such that

© = o, = @, andy; = Pt forall0 <i < n.

The sequencey, ¢1, ..., ¢, is called aderivationof i) from ¢ according ta&. A derivation of length
n is written asp % . The relation% denotes the reflexive and transitive closure-gf .

Example 3.2.3 The grammars of Example 3.2.2 have, among others, the tlerisa

F—=F+T—=T+4+T—T*xF+T—Txld+T = Fxld+T =
G[) G[) G[) G[) GO GO
Fxld+ F=Id*xld+ F=1Id *Id + Id,

G[) GO
E?E+E?E*E+E?Id*E+E?Id*E+Id?Id*Id+Id.

We conclude from these derivations thlﬁtGé» Id * Id 4 Id holds as well a&/ % IdxIld+1d. O
1 0

Thelanguage defined by context-free gramma¥ = (V, Vi, P, S) is the set

L(G):{uEqu|S:;> u}.

Awordz € L(G) is called aword of G. Aword e € (Vi UV)* whereS % ais called asentential
formof G.

Example 3.2.4 Let us consider again the grammars of Example 3.2.3. The ldardd + Id is a word
of bothGy andGy, since E % IdI1d +Id aswell asF % Id*1d+Id hold. O
0 1

We omit the indeXG in = when the grammar to which derivations refer is clear fromcitvetext.

The syntactic structure of a program, as it results fromasstitt analysis, is thparse treg which
is anordered treethat is, a tree in which the outgoing edges of each node dex@d. The parse tree
describes a set of derivations of the program accordinggatiderlying grammar. It, therefore, allows

40 3 Syntactic Analysis

to define the notiommbiguityand to explain the differences between parsing strateggesSections
3.3 and 3.4. Within a compiler, the parse tree serves asthdaceto the subsequent compiler phases.
Most approaches to the evaluation of semantic attributeshey are described in Chapter 4, about
semantic analysis, work on this tree structure.

LetG = (Vn, Vp, P, S) be a context-free grammar. Lebe an ordered tree whose inner nodes are
labeled with symbols frony and whose leaves are labeled with symbols fignu {<}. ¢ is aparse
treeif the label X of each inner node of ¢ together with the sequence of labéls, ..., X} of the
children ofn in ¢ has the following properties:

1. X — X;... X} is aproduction fronP.
2. IsX; ... X = ¢, thenk = 1, that is, node: has exactly one child and this child is labeled with
3. IsX; ... Xy # ethenX; # ¢ for eachi.

If the root oft is labeled with nonterminal symbel, and if the concatenation of the leaf labels yields
the terminal wordv we callt a parse tree for nontermindl and wordw according to grammag. If
the root is labeled witt, the start symbol of the grammar, we just aadl parse tree fow.

Example 3.2.5Fig. 3.1 shows two parse trees according to gram@asf Example 3.2.2 for the word
[dxld+1d. O

Lid | [J [f [+ g] [| [«][ia][+][id]

Fig. 3.1.Two syntax trees according to gramngar of Example 3.2.2 for the wordd * Id + Id.

A syntax tree can be viewed as a representation of deriatidrere one abstracts from the order and
the directionderivationor reduction in which productions were applied. A word of the language is
calledambiguousf there exists more than one parse tree for it. Correspaghgithe grammars is
calledambiguousif L(G) contains at least one ambiguous word. A context-free grantimaais not
ambiguous is calledon-ambiguous

Example 3.2.6 The grammaf=; is ambiguous because the woldi+ Id 4+ Id has more than one parse
tree. The grammaty, on the other hand, is non-ambiguousl

The definition implies that each worde L(G) has at least one derivation frofh To each derivation
for a wordx corresponds a parse tree farThus, each word: € L(G) has at least one parse tree.
On the other hand, to each parse tree for a wocdrresponds at least one derivation forAny such
derivation can be easily read off the parse tree.

Example 3.2.7 The word Id + Id has the one parse tree of Fig. 3.2 according to grantimarTwo
different derivations result depending on the order in Whie nonterminals are replaced:

F=F+E=Ild+E=Id+Id
F=F+E=FE+Ild=Id+Id

3.2 Foundations 41

L] [+] [d]

Fig. 3.2. The uniquely determined parse tree for the wiard- Id.

In Example 3.2.7 we saw that—even with non-ambiguous wordgveral derivations might corre-
spond to one parse tree. This results from the differentilpitises to chose a nonterminal in a sen-
tential form for the next application of a production. Ona chose essentially two different canonical
replacement strategies, replacing the leftmost nontexinointhe rightmost nonterminal. In each case
one obtains uniquely determined derivations, naneftynostandrightmostderivations, resp.

A derivationyp; = ... = ¢, of o = ¢, from S = ¢, is aleftmost derivatiorof ¢, denoted

ass l:*> ¢ , if in the derivation step fronp; to ¢+, the leftmost nonterminal af; is replaced, i.e.
m

i = AT, piy1 = uar forawordu € Vi and a productiodd — o € P.
Similarly, we call a derivatiopp; = ... = ¢,, arightmost derivatiorof o, denoted bys == ¢,
m

if the rightmost nonterminal iy; is replaced, i.ep; = 0 Au, ;11 = cauwithu € Vi andA — a €
P.

A sentential form that occurs in a leftmost derivation (tighst derivation) is calleteft sentential
form (right sentential form)

To each parse tree faf there exists exactly one leftmost derivation and exactlg aghtmost
derivation. Thus, there is exactly one leftmost and onegmgist derivation for each unambiguous word
in a language.

Example 3.2.8 The word Id % Id 4 Id has, according to grammé#, the leftmost derivations
El:>E+El:>E*E+El:>Id*E+El:>Id*ld+El:>Id*ld+ld and

El:>E*El:>Id*El:>Id*E+El:>Id*Id+El:>Id*Id+Id.

It has the rightmost derivations

F—F+F—F+ld=FE+«EFE+Ild= FExld+Id=Id*Id+1Id und
F—=F+«F—F+xF+F—F+«+F+|ld=— Exld+Id=Id*Id + Id.

The word Id + Id has, according ta=, only one leftmost derivation, namely

El:>E+El:>|d+El:|d+ld

and one rightmost derivation, namely
E—FE+F=F+Id=Id+1Id.

a

In an unambiguous grammar, the leftmost and the rightmastat®n of a word consist of the same
productions. The difference is the order of applicatione Tuestions is, can one find sentential forms
in both derivations that correspond to each other in thefatig way: in both derivations will, in the
next step, the same occurrence of a nonterminal be replaced?

The following lemma establishes such a relation.

42 3 Syntactic Analysis

Lemma3.1. 1.If Sl:*> uAgp holds, then there exists, with) == w«, such that for allv with
p == v holdsS —s 1 Av,
2. If S == ¢ Av holds, then there exists,@awith ¢ == v, such that for alk: with ¢y == « holds

S == uAp. O
lm

Fig. 3.3 clarifies the relation between and v on one side and) and » on the other side.

Fig. 3.3. Correspondence between leftmost and rightmost derivation

Context-free grammars that describe programming langusiyeuld be unambiguous. If this is the
case, then there exist exactly one parse tree, and one &fand one rightmost derivation for each
syntactically correct program.

3.2.2 Productivity and Reachability of Nonterminals

A context-free grammar might have superfluous nontermiaiads productions. Eliminating them re-
duces the size of the grammar, but doesn’t change the largWagwill now introduce two properties
of nonterminals that characterize them as useful and pressthods to compute the subsets of nonter-
minals that have these properties. Grammars from whichoaiterminals not having these properties
are removed will be calleteduced We will later always assume that the grammars we deal weh ar
reduced.

The first required property of useful nonterminalgieductivity A nonterminalX of a context-
free grammartz = (Vy, Vi, P, S) is calledproductive if there exists a derivatioX :;> w for a word

w € Vi, or equivalently, if there exists a parse tree whose roatisled withX .

Example 3.2.9 Consider the gramma¥ = ({5, S, X,Y, 7}, {a,b}, P, S’), whereP consists of the
productions :

S — S

S — aXZ|Y
X — bS|aYby
Y — balaZ

Z — aZX

ThenY is productive and therefore alsb, S and.S’. The nonterminalZ, on the other hand, is not
productive since the only production f@rcontains on occurrence &f on its right side. O

A two-level characterization of nonterminal productivigading to an algorithm to compute it is the
following:

3.2 Foundations 43

(1) X is productive through productiop if and only if X is the left side o, and if all nonterminals
on the right side op are productive.
(2) X isproductiveif X is productive through at least one of its alternatives.

In particular,X is thereby productive if there exists a productin— « € P whose right side: has no
nonterminal occurrences, thatis< V.. Property (1) describes the dependence of the information f
X on the information about symbols on the right side of the potidn for X'; property (2) indicates
how to combine the information obtained from the differdtermatives forX .

We describe a method that computes for a context-free graréhthe set of all productive non-
terminals. The method uses for each productioam countercount[p], which counts the number of
occurrences of nonterminals whose productivity is not yetin. When the counter of a productipn
is decreased to O all nonterminals on the right side must déyative. Therefore, also the left side of
p is productive through. To manage the productions whose counter has sunk to O thethig uses a
worklist .

Further, for each nontermin& a list occ[X] of occurrences of this nonterminal in right sides of
productions is managed:

set(nonterminal) productive < 0; // result-set
int count[production]; // counter for each production
list(nonterminal) W «— [];
list(production) occ[nonterminall; // occurrences in right sides
forall (nonterminal X) occ[X]+« []; // Initialization
forall (production p) {count[p] < 0;

init(p):

}

The callinit(p) of the routinenit() for a productiorp, whose code we have not given, iterates over the
sequence of symbols on the right sidevoAt each occurrence of a nontermidélthe countetount[p]
is incremented, angis added to the listcc[X]. If at the end stilkcount[p] = 0 holds therinit(p) enters
productionp into the listi¥. This concludes the initialization.

The main iteration processes the productionglirone by one. For each productigrin W, the
left side is productive throughand therefore productive. When, on the other hand, a noimati is
newly discovered as productive, the algorithm iteratesugh the listocc[X] of those productions in
which X occurs. The counteount[r] is decremented for each productiom this list. The described
method is realized by the following algorithm:

while (17 £) {
X — hd(W); W «— tl(W);
if (X & productive) {
productive «— productive U { X };
forall ((r : A — «) € occ[X]) {

count[r]——;
if (count[r] =0) W — A=W,
} // endof forall
} // endof if
} // endof while

Let us derive the run time of this algorithm. The initialimat phase essentially runs once over the
grammar and does a constant amount of work for each symbelmEin iteration through the worklist

44 3 Syntactic Analysis

enters the left side of each production once into thédisand so removes it at most once from the list.
At the removal of a nonterminal§ from I more than a constant amount of work has to be done only
whenX has not yet been marked as productive. The effort for sucti eproportional to the length of
the listocc[X]. Thesumof these lengths is bounded by the overall size of the grantfnahis means
that the total effort is linear in the size of the grammar.

To show the correctness of the procedure, we ascertain fhagsesses the following properties:

e If X is entered into the se@toductive in the j-th iteration of thewhile-loop, there exists a parse
tree for X of height at mosj — 1.
e For each parse tree, the root is entered iit@nce.

The efficient algorithm just presented has relevance beytsrapplication in compiler construction.
It can be used with small modifications to compléastsolutions ofBooleansystems of equations,
that is of systems of equations, in which the right sides &gictions of arbitrary conjunctions of
unknowns. In our example, the conjunctions stem from thietrigdes while a disjunction represents
the existence of different alternatives for a nonterminal.

The second property of a useful nonterminal igéachability We call a nonterminak reachablein
a context-free gramma¥ = (V, Vi, P, S), if there exists a derivatiof :é> aXp.

Example 3.2.10Consider the gramma&y = ({S,U,V, XY, Z},{a,b,c,d}, P, S), whereP consists
of the following productions:

S — Y X — ¢
Y - YZ|Yalb V - Vd|d
Uu—-V Z — 7ZX

The nonterminal$, Y, Z and X are reachable, whil&” andV" are not. O

Reachability can also be characterized in a two-level defimthat leads to an algorithm:

(1) IfanonterminalX is reachable and — « € P, then each nonterminal occurring in the right side
« is reachable through this occurrence.

(2) A nonterminal is reachable if it is reachable througheast one of its occurrences.

(3) The start symba$ is always reachable.

Letrhs[X] for a nonterminalX be the set of all nonterminals that occur in the right siderofipctions
with left sideX . These sets can be computed in linear time. Theesebable of reachable nonterminals
of a grammar can be computed by:

set(nonterminal) reachable « ();
list(nonterminal) W «— S::[];
nonterminal Y
while (W # []) {
X — hd(W); W «—tl(W);
if (X & reachable) {
reachable «— reachable U {X };
forall (Y € rhs[X]) W — W U{Y};
}

To reduce a gramma, first all non-productive nonterminals are removed fromglemmar together
with all productions in which they occur. Only in a secondostge the non-reachable nonterminals
eliminated, also together with the productions in whiclytbecur. This second step is, therefore, based
on the assumption that all remaining nonterminals are il

3.2 Foundations 45
Example 3.2.11Let us consider again the grammar of Example 3.2.9 with tbdymtions

S — S

S — aXZ|Y
X — bS|aYdY
Y — bal|aZ
Z — aZX

The set of productive nonterminals{i§’, S, X, Y}, while Z is not productive. To reduce the grammar,
a first step removes all productions in whighoccurs. The resulting set 13; :

S — S
S — Y
X — bS|aYdY
Y — ba

Although X was reachable according to the original set of productidisno more reachable after the
first step. The set of reachable nonterminalB{s= {5’,.5,Y }. By removing all productions whose
left side if no longer reachable the following set of obtaine

S — S
S — Y
Y — ba

a

We assume n the following that grammars are always reduced.

3.2.3 Pushdown Automata

This section treats the automata model corresponding ttexbfree grammars, pushdown automata.
We need to describe how to realize a compiler component #rébpns syntax analysis according to
a given context-free grammar. Section 3.2.4 describes auwhthod. The pushdown automaton con-
structed for a context-free grammar, however, has a pralilésmon-deterministic for most grammars.
In Sections 3.3 and 3.4 we describe how for appropriate asbek of context-free grammars the thus
constructed pushdown automaton can be modified to becoreemaistic.

In contrast to the finite-state machines of the precedingtelnaa pushdown automaton has an
unlimited storage capacity. It has a (conceptually) unlieadndata structure, thetack which works
according to dast-in, first-outprinciple. Fig. 3.4 shows a schematic picture of a pushdavoraaton.
The reading head is only allowed to move from left to rightwas the case with finite-state machines.
In contrast to finite-state machines, transitions of thehdos/n automaton not only depend on the
actual state and the next input symbol, but also on some tstgection of the stack. A transition may
change this upper section of the stack and it may consumeettiénput symbol by moving the reading
head one place to the right.

Formally, apushdown automatas a tupleP = (Q, Vr, 4, qo, F'), where

e () is afinite set oktates

e Vr is theinput alphabet

e ¢ € @ is theinitial stateand

e [C Qisthe set ofinal statesand

e A, isafinite subset o)™ x Vr x Q*, thetransition relation The transition relatiom\ can be seen
as a finite partial functiom\ from Q x V7 into the finites subsets @}*.

46 3 Syntactic Analysis

input tape

HEEEEE

control

stack

1

Fig. 3.4. Schematic representation of a pushdown automaton

Our definition of a pushdown automaton is somewhat unusuatiagsn’t make a distinction between
the states of the automaton and its stack symbols. It usesathe alphabet for both. In this way, the
topmost stack symbol is interpreted as #wtual state The transition relation describes the possible
computation steps of the pushdown automaton. It lists finiteny transitions. Executing the transition
(v, z,7') replaces the upper sectiane Q™ of the stack contents by the new sequente Q* of
states and reads € Vr U {¢} in the input. The replaced section of the stack contents hiesist the
length 1. A transition that doesn’t inspect the next inpumbyl is called arz-transition

Similarly as for finite-state machines, we introduce theiarobf a configurationfor pushdown
automata. A configuration encompasses all components @nainfluence the future behavior of the
automaton. With our kind of pushdown automata these aretéiok& sontents and the remaining input.
Formally, aconfigurationof the pushdown automataR is a pair(y,w) € QT x V. In the linear
representation the topmost position of the stack is alwaykearight end ofy while the next input
symbol is situated at the left end of A transitionof P is represented through the binary relatign
between configurations. This relation is defined by:

(vw) b, (Y w), it y=ap, v =af, w=azw und (B,z,5)€A

for a suitablean € @Q*. As was the case with finite-state machinegoanputationis a sequence of
configurations, where a transition exists between each tmsacutive members. We denote them by
C l—; C'" if there exist configuration§’;, ..., Cy 1 such thatC; = C, C,y 1 = C" and C; k-, Ciqq

for 1 <i < nholds. The relationst{, and D—P are the transitive and the reflexive and transitive closure
of I, , resp. We have:

l_};:ngll_}; and I_P:ngOI_P
A configuration(qo, w) for aw € V; is called aninitial configuration (g, <), for ¢ € F, afinal
configurationof the pushdown automatai. A word w € V! is acceptedby a pushdown automaton
Pif (g0, w) I, (g,€) holds for ag € F. ThelanguageL(P) of the pushdown automatadf is the set
of words accepted by:

L(P)={we Vi |3f€F: (q.w)F, (f,9)}

This means, a wora is accepted by a pushdown automaton if there exists at le@stomputation
that goes from an initial configuratiofgg, w) to a final configuration. Such computations are called
accepting Several accepting computations may exist for one wordalsat several computations that
can only read a prefix of a word or that can reaab, but don’t reach a final configuration.

In practice, accepting computations should not be foundiblyand error. Thereforeleterministic
pushdown automata are of particular importance.

3.2 Foundations 47

A pushdown automator?’ is calleddeterministic if the transition relationA has the following
property:

(D) If (71, 2,72), (71, 2', %) are two different transitions il and~; is a suffix ofy; thenz anda’
are inX and are different from each other, thatis# ¢ # 2’ andx # 2.

If the transition relation has the prope(tf) there exists at most one transition out of each configura-
tion.

3.2.4 The Item-Pushdown Automaton to a Context-Free Gramma

In this section, we meet a method that constructs for eactexbfree grammar a pushdown automaton
that accepts the language defined by the grammar. This atgnnsanon-deterministic and therefore
not overly useful for a practical application. However, veen@erive the.L-parsers of Section 3.3, as
well as thelL R-parsers of Section 3.4 by appropriate design decisions.

The notion of context-freéem plays a decisive role. Let = (Vy, Vr, P, S) be a context-free
grammar. Acontext-free itenof G is a triple (4, a, 3) with A — «f € P. This triple is, more
intuitively, written as[A — «.3]. The item[A — «.5] describes the situation that in an attempt to
derive a wordw from A a prefix ofw has already been derived fram« is therefore called thkistory
of the item.

Anitem[A — «a.(] with 5 = ¢ is calledcomplete The set of all context-free items 6f is denoted
by Its. Is p the sequence of items

p=1[A1 — a1.01][A2 — a2.02] ... [An — ap.Bh]
thenhist(p) denotes the concatenation of the histories of the items icé.,
hist(p) = a1aa

We now describe how to construct titem-pushdown automatao a context-free grammar =
(Vn, Vi, P, S) . The items of the grammar act as its states and, therefeeaal stack symbols. The
actual state is the item whose right side the automaton igjesessing. Below this state in the stack
are the items, where processing of their right sides has lbegun, but not yet been finished.

Before we show how to construct the item-pushdown autom@atangrammar, we want to extend
the grammag is such a way that termination of the pushdown automaton eaedognized by looking
at the actual state. ISthe start symbol of the grammar, candidates for final stdtdeatem-pushdown
automaton are all complete itemiS — «.] of the grammar. IfS also occurs on the right side of a
production such complete items can occur on the stack biuhgtiautomaton need not terminate since
below it there may be incomplete items. We, therefore, ektka grammaé by a new start symbdl’,
which does not occur in any right side. F&rwe add the production$’ — S to the set of productions
of GG. As initial state of the item-pushdown automaton for theeagied grammar we chose the item
[S" — .S] and as single final state the complete itgfh— S.]. Theitem-pushdown automatda the
grammaiG is the pushdown automaton

Po = (Itg, Vi, A [S" — .S],{[S" — S.]})
where the transition relatiod has three types of transitions:

(E) A(X - BYA].e) —{[X = BYAY —.a] |Y —ac€ P}
~{

(5) A(X — B.arl,a) [X — Ba.r]}
(R) A(IX — BYAY — al,e) = {[X — BYA]}.

Transitions according tOF) are calledexpanding transitionsthose according t@S) shifting transi-
tions and those according {@?) reducing transitions

Each sequence of items that occurs as stack contents in thputation of an item-pushdown
automaton satisfies the following invarigd:

48 3 Syntactic Analysis
(I) I (8" — .S],uv) l—;G (p,v) then hist(p) :;> u.

This invariantis an essential part of the proof that the Hmmshdown automatoR; only accepts words
of G, thatis, thatL (Pz) C L(G) holds. We now explain the way the automatesn works and at the
same time give a proof by induction over the length of comiparta that the invariant/) holds for
each configuration reachable from an initial configuratia.us first consider the initial configuration
for the inputw. The initial configuration ig[S" — .S], w). The wordu = ¢ has already been read,
hist([S” — .S]) = ¢, ands == ¢ holds. Therefore, the invariant holds in this configuration

Let us now consider derivations that consist of at least mresition. Let us firstly assume that the
last transition was an expanding transition. Before thasdition, a configuratiofp[X — 5.Y7],v)
was reached from the initial configurati¢is’ — .5], uv).

This configuration satisfies the invarigib by the induction hypothesis, i.enist(p)3 == u holds.

The item[X — (.Y'v] as actual state suggests to derive a prefirom Y. To do this, the automaton
should non-deterministically select one of the alterrestifor Y. This is described by the transitions
according to(E). All the successor configuratioris| X — 5.Y4][Y — .a],v) forY — « € P also
satisfy the invariant/) because

hist(p[X — B.YA][Y — .a]) = hist(p)3 = u.

As next case, we assume that the last transition was a shifansition. Before this transition, a con-
figuration (p[X — B.a7],av) was reached from the initial configuratigft’ — .S], uav). This con-
figuration satisfies the invariarif) by the induction hypothesis, that isist(p)3 == u holds. The

successor configuratidp[X — (a.v], v) also satisfies the invariatf) because
hist(p[X — Ba.y]) = hist(p)Ba == ua

For the final case, let us assume that the last transition wedbuging transition. Before this transitions,
a configuratior{p[X — 5.Y~][Y — «.],v) was reached from the initial configuratioiy’ — .S}, uv).
This configuration satisfies the invarigii) according to the induction hypothesis, thabist(p) S :;> u

holds. The actual state is the complete itém— «.]. It is the result of a computation that started with
the item[Y — .a], when[X — (.Y'v] was the actual state and the alternalive—~ « for Y was se-
lected. This alternative was successfully processed. Gteessor configuratiogp[X — 8Y.~],v) also

satisfies the invariaritl) becauséist(p)Sa :;> wimplieshist(p) Y :;> u. O
Taken together, the following theorem holds:
Theorem 3.2.1 For each context-free gramm@r L(Ps) = L(G).
Proof. Letusassume € L(Ps). We then have
(18— Sl w) K, (' = S]e).
Because of the invariaif), which we have already proved, it follows that

SZMR@V%SD%%M
Thereforew € L(G). For the other direction, we assumaec L(G). We then haves :;> w. To prove

(18" = .Sl,w) k- ([S"— Sl].e)

G

we show a more general statement, namely that for each den'va:G> o :;> wwith A € Vy,

(plA = .al,wv) £, (o4 — a],v)

for arbitraryp € Itg, and arbitraryv € V. This general claim can be proved by induction over the
length of the derivationi = o :;> w. O

3.2 Foundations 49

Example 3.2.12Let G' = ({S,E,T,F}, {+,%,(,),|d}, P’, S) be the extension of grammé¥, by
the new start symbd}. The set of productionB” is given by

S — F
E—>E+T|T
T — T*F|F
F — (E)|Id

The transition relatiomd of P, is presented in Table 3.1. Table 3.2 shows an accepting catigu
of Pg, for the wordld + Id xId. O

Pushdown Automata with Output

Pushdown automata as such are only acceptors, that is, #doyedvhether or not an input string is
a word of the language. To use a pushdown automaton for thecimanalysis in a compiler needs
more than a yes/no answer. The automaton should output titactig structure of accepted input
words. This can have one of several forms, a parse tree oetieeace of productions as they were
applied in a leftmost or rightmost derivation. We, therefaxtend pushdown automata by a means to
produce output.

A pushdown automatowith outputis a tupleP = (Q, Vr, O, A, qo, F), whereQ, Vr, qo, F' are
the same as with a normal pushdown automaton@isla finite output alphabetl is a finite relation
between)™* x (Vr U {e}) and@Q* x (O U {€}). A configurationconsists of the actual stack content,
the remaining input, and the already produced output. lhislament of9™ x V; x O*.

At each transition, the automaton can output one symbol ffbrif a pushdown automaton with
output is used as a parser its output alphabet consists pfolaeictions of the context-free grammar or
their numbers.

The item-pushdown automaton can be extended by a meansdagareutput in essentially two
different ways. It can output the applied production whemét/performs an expansion. In this case,
the overall output of an accepting computation is a leftnaestvation. A pushdown automaton with
this output discipline is calledlaft-parset

Instead at expansion, the item-pushdown automaton cawtinp applied production at each re-
duction. In this case, it delivers a rightmost derivationt, in reversed order. A pushdown automaton
using such an output discipline is calledight-parser.

Deterministic Parsers

In Theorem 3.2.1 we proved that the item-pushdown automBgoto a context-free grammar ac-
cepts the grammar’s languagéG). However, the non-deterministic way of working of the pusivd
automaton is unsuitable for practice. The source of noerdehism lies in the transitions of tyge?):

the item-pushdown automaton can choose between severaiatlves for a nonterminal at expand-
ing transitions, With a non-ambiguous grammar at most orteeéscorrect choice to derive a prefix
of the remaining input. The other alternatives lead soonéater into dead ends. The item-pushdown
automaton can onlguesghe right alternative.

In Sections 3.3 and 3.4, we describe two different ways ttaogpguessing. TheL-parsers of Sec-
tion 3.3 deterministically choose one alternative for tbheial nonterminal using a bounded lookahead
into the remaining input. For grammars of clas&(k) a corresponding parser can deterministically
select on€ F)-transition based on the already consumed input, the noitiatto be expanded and the
next k input symbols.L L-parsers are left-parsers.

LR-parsers work differently. Thegielaythe decision, which L-parsers take at expansion, until
reduction. All the time during the analysis they pursue afigible derivations in parallel that may lead
to a reverse rightmost derivation for the input word. A drecidhas to be taken only when one of these
possibilities signals a reduction. This decision concarhsther to continue shifting or to reduce, and
in the latter case, by which production. Basis for this deaciss again the actual stack contents and

50 3 Syntactic Analysis

Table 3.1. Tabular representation of the transition relation of Extn$2.12. The middle column shows the
consumed input.

top of the stack

input

new top of the stack

5 B
5 — 5]
[E— .E+T)|

[E— .E+T)|

[F — (.B)

[F — (.B)

(5 —)

(B — 1]

[T — . T * F]

[T — .T % F]

[E — E +.T)

[E - E +.T)

T — F

T — F

[T — T % .F]

[T — T % .F]

[F — (B)

[F — .Id]

(F— (B.)

[E - E.+T)

[T — T. % F]

[T — .F][F —1d.]
[T — Tx*.F][F —Id.]

(T — FI[F — (E)]
[T'—Tx*.F][F — (F)]
[T'"— . T*F|[T — F|
(B — T[T — F]

[E— E+.T|T — F|]
[E—E+.T|T —T=x*F.)]
[T — T*F|[T — T F]
[E—T|T—TxF]

[F — (B)[E - T]

[F — (B)[E - B +T)
[E—> E+T][E—>T]
[E—> E+T][E—>E+T]
1§ — B[]

[S— .EJ[E—E+T|]

€

QO —~ ™ m m m M MmO ;- O O 6O 6O 6O O 0 0

m m m MmO O m m mm MM, mm M oM % 4~

[S— E|[E — E+T)
15 — E][E - .T]
[E— .E+T|E— .E+T)]
[E— .E+T|E—.T)
[F — (B)[E — B +1]
[F — (B)[E - .T]
[E— T[T —.Tx*F]
[E — T[T — F]
[T — . T*F|[T—.Tx*F)
[T'— .T* F|[T — .F]
[E—>E+ T][T—> T*F]
[E—>E+ T][T—> F]
(T — FI[F — .(B)]
[T — .F][F — .ld]
[T'— T x* .F][F — .(F)]
[T'— T * .F][F — .Id]
(F — (B)

[F—Id.]

(B (B)]

[E - E +.T)

[T — T % .F]

T F)

[T — T=xFl]

- F)

[T —TxF)]

[T — T+ F]

BT
[E—E+T]
[E—-E+T]

[T — T+ F]

(B —T)

(F— (B)

(F— (B.)

[E - E.+T)

[E - E.+T)

5 — B

15— B

3.2 Foundations 51

stack contents remaining input
[S — .E] Id + Id = Id
[S — .E|[E — .E +T] Id + Id * Id
[S — .E|[E — .E + T|[E — T] Id + Id * Id
[S— .E|[E — .E+T|E— T[T — .F] Id + Id * Id
[S— .E|][F— .E+T|[E— .T|T— .F][F — .d] Id + Id = Id
[S— .E|][E— .E+T|FE— .T|T— .F][F —Id] +1d = Id
[S— .E|J[E— .E+T|[E— T[T — F)] +1d « Id
[S— .E|J[E— .E+T|[E—T] +1d « Id
[S— .E]J[E— E.+1T| +Id * Id
[S— .E][E— E+.T)] Id * Id
[S— .EJ[E—=E+.T|T—TxF Id * Id

[S — .E|[E — E+ .T|[T — .T % F|[T — .F] Id * Id
[S— .E|J[E— E+.

]
Il

T — T % F|[T — .F|[F — .Id] | Id * Id
Il
Il

T

T

T
[S — .E|[E — E+.T|[T — T F|[T — .F|[F —1d] | *Id
[S — .E|[E — E + .T|[T — .T % F|[T — F] +ld
[S — .E|[E — E +.T|[T —T.*F] +ld
[S— .El[E— E+.T)T —Tx*.F) Id
[S— .EJ[E— E+.T)T —T=*.F][F — Id] Id
[S — .E|[E — E+.T|[T — T *.F|[F —Id]
[S — .E|[E — E+.T|[T — T «F)

]

[S— .E|][E—E+T.
[S— E\]

Table 3.2. The accepting computation &%; for the wordld + Id « Id.

a bounded lookahead into the remaining inguR-parsers signal reductions, and therefore are right-
parsers. There does not exist AR-parser for each context-free grammar, but only for gransnoér
the classL R(k), wherek again is the number of necessary lookahead symbols.

3.2.5 first- and follow-Sets

Let us consider the item-pushdown automafén to a context-free grammag when it performs
an expansion, that is, at gi)-transition. Just before such a transitidfy is in a state of the form
[X — .Y []. In this state, the pushdown automatBn must select non-deterministically one of the
alternative§” — a4 | ... | «, for the nonterminal’. A good aid for this selection is the knowledge of
the sets of words that can be produced from the differentretes. If the beginning of the remaining
input only matches words in the set of words derivable from alternatived” — «; this alternative is
to be selected. If some of the alternatives also produce slurds or ever the set of words that may
follow Y becomes relevant.

It is wise to only consideprefixesof such words of a given length since the sets of words that
can be derived from an alternative are in general infinite 3éts of prefixes, in contrast, are finite. A
generated parser bases its decisions on a comparison oigrefithe remaining input of lengthwith
the elements in these precomputed sets. For this purposetmwduce the two functionfirst, and
followy,, which associate these sets with words qéy U Vr)* andVy, resp. For an alphab&t, we

write V=" for U Vi and V=, for V=R U (V1 {#}), where# is a symbol that is not contained

in V. Like the EOF symbobof it marks the end of aword. Let = a; ... a, be aworda; € Vr for
(1<i<n),n>0.Fork >0, we define thé-prefixof w by

52 3 Syntactic Analysis

ai...an if n<k
wly, = .
ai...ar Otherwise

Further, we introduce the operatoy, : Vo x Vp — VTSk defined by
u O v = (uv)]|g

This operator is calle@-concatenationWe extend both operators to sets of words. For sefs V!
andLy, L, C V=F we define

Ly ={w|y lwe L} and Ly O La={xGry|x € L1,y € La}.

LetG = (Vy, Vr, P, S) be a context-free grammar. Fbr> 1, we define the functiofirst;, : (Vy U

V) — 2Vi" that returns for each wordl the set of all prefixes of length of terminal words that can
be derived fromu.
firsti(a) = {ul | @« == u}

<k . .
Correspondingly, the functiofollow;, : Vy — 2"7.# returns for a nonterminaX the set of terminal
words of length at most that can directly follow a nontermin& in a sentential form:

followy, (X) = {w € V' | S == BX v andw € first,(v#)}

The sefirst, (X)) consists of thé-prefixes of leaf words of all trees fo¢, followy, (X) of thek-prefixes
of the second part of leaf words of all upper tree fragmentsfqsee Fig. 3.5). The following lemma

I
foll X
first,(X) ollow, (X)

Fig. 3.5. first, andfollowy, in a parse tree

describes some propertiesiotoncatenation and the functidinst;.

Lemma 3.2.Letk > 1, and letL,, Lo, Ly C V=F be given. We then have:

(a) Ly Ok (L2 O L3) = (L1 O L2) O L3

(b) LiGk{e} ={e} @k L1 = L1k

(¢) LiopLa=0 iff Li=0VIy=0

(d) e€Li gLy iff e€LiNe€ Ly

(e) (L1iLa)|k = Llk @k Lali

(f) firsty(Xy...X,,) =firsty(X1) Ok . .. O firsty (X,,)

for X1,...,X, € (Vp UVy)

3.2 Foundations 53
The proofs for(b), (¢), (d) and(e) are trivial. (a) is obtained by case distinctions over the length of
wordsz € L1,y € La, 2 € L3. The prooffor(f) useqe) and the observation thaf; . . . X,, == u holds
if and only if u = u . .. u,, for suitable words:; with X; == u,.

Because of propertff), the computation of the sétst;(«) can be reduced to the computation of
the seffirst, (X) for single symbolsX € Vp U V. Sincefirst;(a) = {a} holds fora € Vp it suffices
to determine the sefgst;(X) for nonterminalsX. A wordw € V=" is in first,(X) if and ony ifw is
contained in the sdirst;, («) for one of the productionX’ — « € P.

Due to property /) of Lemma 3.2, thdirst,-sets satisfy the equation systéfi):

firste (X) = | J{firstu(X1) @ ... O first(X,,) | X — X;... X, € P}, X; € Vy (fi)

Example 3.2.13Let G> be the context-free grammar with the productions:

0: S — F 3: B — +FE 6: T — T
1: E — TE 4. T — FT’ 7. F — (E)
2: E — ¢ 5: T — ¢ 8: F — Id

G- generates the same language of arithmetic expressioas asd G;. We obtain as system of
equations for the computation of tfiest; -sets:

first; (S) = firsty(E)

firsty (F) = firsty (T') ®y firsty (E")
first;(E') = {e} U {+} @ firsty(E)

firsty (T') = firsty (F) @ first, (T")
firsty(T7) = {e} U {*} @4 firsty(T)
firsty(F) = {ld} U {(} ®1firsty(E) &1 {)}

O

The right sides of the system of equations offin&t;-sets can be represented as expressions consisting
of unknowndirst,(Y'),Y € Vi and the set constanfs:}, « € Vr U {e} and built using the operators
©r anduU. Immediately the following questions arise:

e Does this system of equations always have solutions?
e If yes, which is the one corresponding to first;-sets?
e How does one compute this solution?

To answer these questions we first consider in general sgspémquations likéfi) and look for an
algorithmic approach to solve such systems:xgt . ., x,, be a set of unknowns,

X1 = fl(le---,Xn)
Xg = f2(X17'-';Xn)
Xn = fn(xlv'- ';Xn)

a system of equations to be solved over a donfairEach f; on the right side denotes a function
fi : D™ — D. A solutionI* of this system of equations associates a vdli;) with each unknown
x; such that all equations are satisfied, that is

I"(x;) = fillT*(x1), ..., I"(x4))

holdsforalli =1,...,n.
Let us assumd) contained a distinctive elemedy that would offer itself as start value for the
calculation of a solution. A simple idea to determine a sotutonsists in setting all the unknowns

54 3 Syntactic Analysis

X1,...,X, to this start valuely. Let I(°) be this variable binding. All right sideg are evaluated in
this variable binding. This might associate each variahlevith a new value. All these new values
form a new variable binding("), in which the right sides are again evaluated, and so on.4.assume
that an actual variable binding’) has been computed. The new variable bindifg ") is determined
through:

I(Hl)(xi) = fi(l(j)(xl), A% (%))

A sequence of variable bindind&”, I(V)| . .. results. If for aj > 0 holds that//+1) = 1) then
19(x;) = fiIV(x1),...,19(x,)) (i=1,...,n).

Thereforel V) = I* is a solution.

Without further assumptions it is unclear whethef with 701 = 10U) is ever reached. In the
special cases considered in this volume, we can guararethihprocedure converges not only against
some solution, but against the desired solution. This isthas properties of the domaifisthat occur
in our applications.

e There always exists partial order on the domairD represented by the symb@l In the case of
thefirst,-sets the sdb consists of all subsets of the finite base‘?;lét'C of terminal words of length
at mostk. The partial order over this domain is thebset relation

e D contains a uniquely determined least element with whichitération can start. This element is
denoted ad (bottom). In the case of thigst,-sets, this least element is the empty set.

e For each subsét C I, there exists &ast upper bounfl| Y wrt. to the relatiorC. In the case of
thefirst,-sets, the least upper bound of a set of sets is the union sétits Partial orders with this
property are calledompete lattices

Furthermore, all functiong; are monotonic that is, they respect the order of their arguments. In
the case of théirst,-sets this holds because the right sides of the equatiortsudtdrom the opera-
tors union and:-concatenation, which are both monotonic and because theasition of monotonic
functions is again monotonic.

If the algorithm is started witkd, = L, it holds that/(?) C 1(1). Hereby, a variable binding is less
than or equal to another variable binding, if this holds far value of each variable. The monotonicity
of the functionsf; implies by induction that the algorithm producesamtendingequence

OcOcc@c. 1w,

of variable bindings. If the domaih s finite, there exists g such thaf /) = 7U+1 holds. This means
that the algorithm in fact finds a solution. One can even shwt this solution is théeastsolution.
Such a least solution does even exist if the complete lattinet finite, and if the simple iteration does
not terminate. This follows from the fixed-point theorem afdster-Tarski, which we treat in detail in
the third volumeCompiler Design: Analysis and Transformation

Example 3.2.14Let us apply this algorithm to determine a solution of theteyysof equations of
Example 3.2.13. Initially, all nonterminals are assodatéth the empty set. The following table shows
the words added to thf@st;-sets in the-ten iteration.

L L 1[2]s[4]s]6[7]s]

S Id (
E Id (

E'|| e +

Tl |id (

T € *

Fiid (

The following result is obtained:

3.2 Foundations 55

first,(S) = {Id, (} first; (T') = {Id, (}
first,(E) = {Id, (} first;(T") = {e, *}
first;(E') = {e, +} first; (£) = {Id, (}

a

It suffices to show that all right sides are monotonic and thatdomain is finite to guarantee the
applicability of the iterative algorithm for a given syst@&hequations over a complete lattice.

The following theorem makes sure that fleastsolution of the system of equatioif§) indeed
characterizes thiérst;-sets.

Theorem 3.2.2 (Correctness of théirst;-sets) Let G = (Vn, Vr, P, S) be a context-free grammarr,
D the complete lattice of the subsets‘é,?k, and/ : Vy — D be the least solution of the system of
equationgfi). We then have:

I(X) =first(X) forall X € Vy

Proof. Fori > 0 let I be the variable binding after thieth iteration of the algorithm to find
solutions for(fi). One shows by induction ovérthat for alli > 0 I(V(X) C first;(X) holds for
all X € Vy. Therefore, it also hold$(X) = [J,5,(X) C first,(X) for all X € Vy. For the other

direction it suffices to show that for each derivatﬂsinl:*> w, there exists an> 0 with w|, € IV (X).
m

This claim is again shown by induction, this time by induntmver the lengtm > 1 of the leftmost
derivation. Isn = 1 the grammar has a productioh — w. We then have

IM(X) D firsty,(w) = {w|i}

and the claim follows withk = 1. Isn > 1, ther exists a productioX — wugXiu; ... X, With
Ug, - um € Vi and Xy, ..., X,, € Vy and leftmost derivations; l:*>wj,j =1,...,k who all
m

have a length less than with w = wowiuy ... wyu,,. According to the induction hypothesis, for
eachj € {1,...,m} there exists d;, such thatw;|) € 1) (X;) holds. Leti’ be the maximum of
thesei;. Fori = ¢’ + 1 it holds

ID(X) D {ue} Ok I (X1) Ok {ur} ... O 16)(X,0) Ok {um}
2 {uo} Ok {wilr} Ok {ur} ... Ok {wmlr} Ok {um}
2 {wlx}

The claim follows. O

To compute least solutions of systems of equations or dilpifar systems of inequalities over com-
plete lattices is a problem that also appears in the conmipataf program invariants, which are used
to show the applicability of program transformations, whige to increase the efficiency of programs.
Such analyses and transformations are presented in thex@@ompiler Design: Analysis and Trans-
formation The global iterative approach just sketched is not necgstiae best method to solve sys-
tems of equations. In the volun@ompiler Design: Analysis and Transformatiare describe more
efficient methods.

Let us now consider how to computdlow;-sets for an extended context-free grami@aAgain,
we start with an adequate recursive property. For a word V.} U VTS’“_l{#} holdsw € followy, (X)
if
(1) X = S’ is the start symbol of the grammar and= # holds,
(2) or there exists a productidn — «X 3 in G such thatw € first,(3) @ follow (Y") holds.

The setdollow,, (X) satisfy the following system of equations :

follow (S”) = {#}

follow, (X) = U{firstx(3) @ follow,(Y) | Y — a X3 € P}, S+ X eVy (fo)

56 3 Syntactic Analysis

Example 3.2.15Let us again consider the context-free grami@arof Example 3.2.13. To calculate
thefollow; -sets for the grammar, we use the system of equations:

follow; (S) = {#}

follow; (E) = follow; (S) U follow; (E") U {)} ® follow; (F)
follow; (E") = follow; (E)

follow (T') = {e,+} ®; follow; (F) U follow, (77)

follow; (T") = follow; (T")

follow; (F) = {e, x} ®; follow, (T)

O

The system of equatiorif) has again to be solved over a subset lattice. The right sidee equations
are built from constant sets and unknowns by monotonic epesal hereforeg(fo) has a solution, which
can be computed by global iteration. We want to ascertairthigalgorithm indeed computes the right
sets.

Theorem 3.2.3 (Correctness of théllow,.-sets) Let G = (Vy, Vp, P, S’) be an extended context-
free grammar] be the complete lattice of subsetsigf U V="' {#} and,I : Vy — D be the least
solution of the system of equatioff®). We then have:

I(X) = follow,(X) forall X € Vy
O
The proof is simiilar to the proof of Theorem 3.2.2 and is tefthe reader (Exercise 6).

Example 3.2.16 We consider the system of equations of Example 3.2.15. Topatenthe solution
the iteration again starts with the vallifor each nonterminal. The words added in the subsequent
iterations are shown in the following table:

L [ul2] 3] 4 [s5][6[7]
S| #

E #)

E #)

T +,#,)

T’ +,#,)

F x4, #,)

Altogether we obtain the following sets:

follow; (S) = {#} follow, (T') = {+, #,
followy (E) = {#,)} follow, (T7) . #,
follow; (E) = {#,)} follow; (F) = {x,+,#,)}

I
+
B

O

3.2.6 The Special Casérst; and follow,

The iterative method for the computation of least solutiohsystems of equations for ttiest;- and
follow, -sets is not very efficient. But even for more efficient methdtle computation dirst;- and
follow; -sets needs a large effort whimets larger. Therefore, practical parsers only use lockébé
lengthk = 1. In this case, the computation of thiest- andfollow-sets can be performed particularly
efficient. The following lemma is the base for our furtheatraent.

3.2 Foundations 57
Lemma 3.3.Let L, L, C V=" be non-empty languages. We then have:

L4 if Lo 7£ () ande Q L4

fronte { (Li\{e}) ULy if Ly # 0 ande € Ly

According to our assumption, the considered grammars ayalreduced. They, therefore, contain
neither non-productive nor unreachable nonterminalsold$ifor all X € Vy thatfirst; (X) as well
asfollow; (X) are non-empty. Taken together with Lemma 3.3, it allows usittgplify the transfer
functions forfirst; andfollow; in such a way that thé-concatenation can be (essentially) replaced by
unions We want to eliminate the case distinction of wheth&rcontained in théirst,-sets or not. This
done in two steps: In the first step, the set of nontermifals determined that satisty € first; (X).

In the second step, thefreefirst;-set is determined for each nontermidalinstead of thdirst; -sets.
Thee-freefirst; -sets are defined by

eff(X) = first, (X)\{c}
= {(wle) | X == w,w # ¢}

To implement the first step, it helps to exploit that for eachterminalX

e efirsty(X) ifandonlyif X = ¢

Example 3.2.17Consider the grammak, of Example 3.2.13. The set of productions in which no
terminal symbol occurs is

0: S —- F
1: B — TE 4. T — FT'
2: E — ¢ 5: TN — ¢

With respect to this set of productions only the nonternsirial and 7”7 are productive. These two
nonterminals are, thus, the ordyproductive nonterminals of gramm@k. 0O

Let us now turn to the second step, the computation ottfreefirst;-sets. Consider a production of
the formX — X; ... X,,. Its contribution toeff(X') can be written as

Jfeff(X)) | X1 X, : e}
Altogether, we obtain the system of equations :
eff(X) = | J{eff(Y) | X — aYB € Pa j,;» e}, XeVn (eff)

Example 3.2.18Consider again the context-free gramniar of Example 3.2.13. The following sys-
tem of equations serves to compute thieeefirst; -sets.

eff(S) = eff(E) eff(T') = eff(F)
eff(E) = eff(T) eff(T7) =0 U {x}
eff(E') =0 U {+} eff(F) ={ld} U {(}

All occurrences of thev; -operator have disappeared. Instead, only constant setguand variables
eff (X') appear on the right sides. The least solution is

d,(} eff(T) = {Id, (}
d, (} eff (T7) = {}
eff(E') = {+} eff(F) = {Id, (}

58 3 Syntactic Analysis

Nonterminals that occur to the right of terminals do not cibte to thes=-freefirst; -sets. Itis important
for the correctness of the construction that all nonterisinfthe grammar are productive.

Thee-freefirst;-setseff(X) can also be used to simplify the system of equations for thepcta-
tion of thefollow;-sets. Consider a production of the fobm— o X X; ... X,,. The contribution of
the occurrence aX in the right side oft” to the sefollow; (X) is

(J{eff(X5) | X3 J1:>5}U{followl()|X1...Xm%5}

If all nonterminals are not only productive, but also redstbahe equation system for the computation
of thefollow; -sets simplifies to

follow, (S”) = {#}
follow, (X) = [J{eff(Y) | A — aXBY~y € P,j3 ? e}

U U{follow;(A4) | A — a X, ? e}, X e Ww\{9"}

Example 3.2.19The simplified system of equations for the computation of fililow; -sets of the
context-free grammags of Example 3.2.13 becomes

follow; (S) = {#}
follow; (E) = follow, (S) U follow,(E’) U {)}
follow; (E’) = follow, (E)
follow, (T') = {+} U follow, (E') U follow, (T”)
follow, (T") = follow, (T)

(

follow; (F') = {x} U follow; (T")

Again we observe that all occurrences of the operatorsvere eliminated. Only constant sets and
variablegfollow; (X') occur on the right side of equations together with the unjperator. O

The next section presents a method that solves arbitratgragsof equations very efficiently that are
similar to the simplified systems of equations for the sétsX') andfollow; (X'). We first describe the
general method and then apply it to the computations ofiteg- andfollow; -sets.

3.2.7 Pure Union Problems
Let us assume we had a system of equations
X; = €4, t=1,...,n

over an arbitrary complete lattid®@. On the right side of the equations were expressigrtbat are
built only from constants i), variablesx;, and applications of the operatar(least upper bound of
the complete latticd). The problem is to efficiently determine the least solutidrihis system of
equations. Such a problem is callegdue union problem

The computation of the set of reachable nonterminals of &egbdifiree grammar is a pure union
problem over the Boolean lattid = {false true}. Also the problems to computefreefirst;-sets and
follow; -sets for a reduced context-free grammar are pure uniorigamsh In these cases, the complete
lattices areVr and2"7“{#} ordered by the subset relation.

Example 3.2.20As running example we consider the subset latlice= 2} together with the
system of equations

xo = {a}
X1 = {b}UXOUX3
X9 = {C}le

X3:{C}UX2UX3

3.2 Foundations 59

We construct a variable-dependency graph to a pure unidslggmo The nodes of this graph are the
variablesx; of the system of equations. An edg@e;, x;) exists if and only if the variable; occurs
in the right side of the variable;. Fig. 3.6 shows the variable-dependency graph for the isysfe

equations of Example 3.2.20

Fig. 3.6.The variable-dependency graph for the system of equatibBzample 3.2.20.

Let I be the least solution of the system of equations. We obshate@tways/ (x;) C I(x;) must
hold if there exists a path from; to x; in the variable-dependency graph. In consequence, thewalu
of all variables in eacktrongly-connected componaeftthe variable-dependency graph are the same.

We label each variable; with the least upper bound of all constants that occur oniti sides of
equations for variablg;. Let us call this valud,(x;). We have for allj that

I(x;) = U{Io(x;) | x; is reachable fronx;}

Example 3.2.21 (Continuation of Example 3.2.20)
For the system of equations of Example 3.2.20 we find:

Io(xo) = {a}

Io(x1) = {b}

Io(x2) = {c}

Io(x3) = {c}

It follows:
I(x0) = Io(x0) = {a}
Ip(x1) = In(x0) U Ip(x1) U Ip(x2) U In(x3) = {a, b, c}
Ip(x2) = In(x0) U Ip(x1) U Ip(x2) U In(x3) = {a,b,c}
Io(x3) = In(x0) U Ip(x1) U Ip(x2) U In(x3) = {a,b,c}
O

This observation suggests the following method to compheddast solutiord of the system of equa-
tions. First, the strongly-connected components of theabbe-dependency graph are computed. This
needs a linear number of steps. Then an iteration over theflistrongly-connected components is
performed.

One starts with a strongly-connected comporn@nthat has no entering edges coming from other
strongly-connected components. The values of all varsabje= () are:

I(xj) = | [{To(xi) | xi € Q}
The valued (x;) can be computed by the two loops:

Dt~ 1;
forall (x; € Q)

t—tU Io(x:);
forall (x; € Q)

I(x;) « t;

60 3 Syntactic Analysis

The run time of both loops is proportional to the number ofredats in the strongly-connected compo-
nentQ. The values of the variables @ are propagated along the outgoing edges.Hgte the set of
edgeqx;, x;) of the variable-dependency graph withe @ andx; ¢ @, that is, the edges leavir(g.
For Ey itis set:
forall ((x;,x;) € EqQ)
To(x5) < Io(x;) U I(x4);

The number of steps for the propagation is proportionaléontiimber of edges ifi.

The strongly-connected componéptogether with the sel; of outgoing edges is removed from
the graph and one continues with the next strongly-condemmponent without ingoing edges. This
is repeated until no more strongly-connected componendirgsnAltogether, we have a method that
performs a linear number of operatian®n the complete latticB.

Example 3.2.22 (Continuation of Example 3.2.20)The dependency graph of the system of equations
of Example 3.2.20 has the strongly-connected components

Qo ={x0} and Q1 = {x1,x2,X3}.

For Qo one obtains the valué (xo) = {a}. After removal ofQ, and the edgéx,,x;), the new
assignmentis:

Io(Xl) = {a,b}
Io(x2) = {c}
Io(xs) = {c}

The value of all variables in the strongly-connected congmo@; arise ady(x;1) U lo(x2) UIp(x3) =
{a,b,c}. O

3.3 Top-down-Syntax Analysis

3.3.1 Introduction

The way different parsers work can best be made intuitivedarcby observing how they construct
the parse tree to an input wortop-downparsers start the construction of the parse tree at the root.
In the initial situation, the constructed fragment of thegearee consists of the root, which is labeled
by the start symbol of the context-free grammar; nothinghef input wordw is consumed. In this
situation, one alternative for the start symbol is seleébeadxpansion. The symbols of the right side
of this alternative are attached under the root extendiagigiper fragment of the parse tree. The next
nonterminal to be considered is the one on the leftmostipasithe selection of one alternative for this
nonterminal and the attachment of the right side below ttaerdabeled with the left side is repeated
until the parse tree is complete. By attaching symbols ofitiie side of a production terminal symbols
can appear in the leaf word of a tree fragment. If there is mderminal to the left of a terminal symbol
in the leaf word the top-dowtop-downparser compares them with the next symbol in the input. If the
agree the parser will consume these symbols in the inpuer@tke, the parser will report a syntax
error.

Thus, atop-downanalysis performs the following two types of actions:

e Selection of an alternative for the actual leftmost nonteaihand attachment of the right side of
the production to the actual tree fragment.
e Comparison of terminal symbols to the left of the leftmostt@aminal with the remaining input.

Figures 3.7, 3.8, 3.9 and 3.10 show some parse tree fragfioerte arithmetic expressiod + Id
Id according to grammat’s. The selection of alternatives for the nonterminals to bheaexied was
cleverly done in such a way as to lead to a successful terioimat the analysis.

3.3 Top-downSyntax Analysis 61

S —- F E' - +FE|e T —«T|e
E-TE T —FT F — (E)|Id

[id [+ [d] «[id]

Fig. 3.7. The first parse-tree fragments ofap-downanalysis of the wordd + Id * Id according to grammat,.
They are constructed without reading any symbol from thetinp

[+]d] «d]

Fig. 3.8. The parse tree fragments after reading of the syriibahd before the terminal symbel is attached to
the fragment.

Le][] [+] [&]
{ {

(] [] [z [=]

Lr] [z]

Fig. 3.9. The first and the last parse tree after reading of the sympalad before the second symbdlappears
in the parse tree.

62 3 Syntactic Analysis

Fig. 3.10. The parse tree after the reduction for the second occurm@éé and the parse tree after reading the
symbolx, together with the remaining input.

3.3.2 LL(k): Definition, Examples, and Properties

The Item-pushdown automatoR; to a context-free gramma¥ works in principle like atop-down
parser; its(F)-transitions make a predictions which alternative to gefecthe actual nonterminal
to derive the input word. The trouble is that the item pushal@utomatonP; takes this decision in
a nondeterministic way. The nondeterminism stems from(#igtransitions. If(X — 3.Y4] is the
actual state and If has the alternative§ — «; | ... | a,, there aren transitions

A(X = BYA),e) = {[X = BYAY — i) | 1<i<n)

To derive a deterministic automaton from the item pushdewtomatonP; we equip the automaton
with abounded lookaheaithto the remaining input. We fix a natural numbder 1 and allow the item
pushdown-automaton to inspect théirst symbols of the remaining input at ea@h) transition to aid
in its decision. If this lookahead of depthalways suffices to select the right alternative we call the
grammarL L(k) grammar.

Let us regard a configuration that the item pushdown-autom&t has reached from an initial
configuration:

(18" — .S,) F,_ (p[X — B.Y7],v)

Because of invarian(/) of Section??it holdshist(p)3 = w.
Letp = [X1 — (1.Xom] ... [Xn — Bn-Xnt170] be a sequence of items. We call the sequence
fut(p) =vn...-m
the future of p. Let § = fut(p). So far, the leftmost derivatiof’ % uY~é has been found. If this

derivation can be extended to a derivation of the terminatwe, that is, S’ l:*> uY o l:*> uv, then
m m

in an L L(k) grammar the alternative to be selected¥oonly depends om, Y andv|.
Let & > 1 be a natural number. The reduced context-free grantiiara L L(k)-grammarif for
every two leftmost derivations:

S==uYo=ufa==uz and S== uYo=— uya == uy
lm lm lm lm lm lm

andz|, = y|r impliess = ~.

3.3 Top-downSyntax Analysis 63

For anL L(k) grammar, the selection of the alternative for the next nomiteal Y in general de-
pends not only orY” and the nexk symbols, but also on the already consumed prefif the input. If
this selection does, however, not depend on the alreadyowetsleft context: we call the grammar
strong LL(k).

Example 3.3.1Let GG, the context-free grammar with the productions:

(stat) — if (Id) (stad) else (stap) |
while (Id) (stat |

{ (statg } |
Id =’ Id;

(staty — (stab (stats |
9

The grammaiG, is an LL(1) grammar. If(staf) occurs as leftmost nonterminal in a sentential form
then the next input symbol determines which alternativetthaspplied. More precisely, it means that
for two derivations of the form

(stah == w (stah @ = wha = wz
lm Im Im
(stah == w (stah @ = wya = wy
lm Im Im
it follows from z|; = y|; that 3 = ~. Is for instancez|; = y|; = if, theng = v =
if (Id) (stad else (stah. O

Definition 3.3.1 (simple LL(1)-grammar)
LetG be a context-free grammar withogHproductions. If for each nonterminal’, each of its alterna-
tives begins with a different terminal symbol, th@iis called asimple LL(1) grammar O

This is a first, easily checked criterion for a special case grammarz; of Example 3.3.1is a simple
LL(1) grammar.

Example 3.3.2We now add the following production to the gramndar of Example 3.3.1:

(stay — Id: (stad | // labeled statement
Id (Id); // procedure call

The grammar7, thus obtained is no longer dnl.(1) grammar because it holds

B
* *
(sta = w (stah 0 = w ld'='ld; a0 = wx
lm Ilm lm
v
* ¥ N *
(sta) = w (stal « = wld: (stah « = wy
lm lm im
)

* /_/H *
(stah = w(sta) a = wld(ld); a0 = wz
lm ilm ilm

with z|; = y|1 = 2|1 = Id, butg, ~, 6 are pairwise different.
However,G» is aLL(2) grammar. For the three leftmost derivations given abovddol

x|y =1d'= yloa =1d : zla =Id(

are pairwise different. And these are indeed the only @litases. O

64 3 Syntactic Analysis
Example 3.3.3 G5 possesses the productions

(stay — if ({var)) (stab else (stab |
while ({var)) (sta

|
{ (stats } |
(var)’="{var); |
(var);

(stats — (stab (stats |

(var) — Id |
1d() |
Id((vars))

(vars) — (var), (vars |
(var)

The grammaiGs is for nok > 1 an LL(k) grammar. To derive a contradiction assu@igwere an
LL(k) grammar for & > 0.

Let (stab = 3 l:*> r and(stah = v l:*> y with
z=1d(ld,1d,...,1d)'="1d; andy = Id (Id, d, . . ., Id);
—— ——
k k
We haver|, = y|i, but
B = (var)’=" (var) v = (var);
and thereforegd £ ~v. O

There exists, however, ahlL(2)-grammar for the languagl(Gs) of grammarGs, which can be ob-
tained fromG3 by factorization Critical in G5 are the productions for assignment and procedure call.
Factorization introduces sharing of common prefixes oféhm®ductions. A new nonterminal sym-
bol follows this common prefix. The different continuatiara be derived from this nonterminal. The
productions

(stah — (var)’'='(var); | (var);

are replaced by
(stat — (var) Z
Z — = (var); |;

Now, anLL(1) parser can decide between the critical alternatives ubimgéxt symbol&d and ’;'.
Example 3.3.4LetG, = ({5, 4, B},{0,1,a,b}, P4, S), where the seP, of productions is given by
S — A|B

A — aAb|0
B — aBbb|1

Then
L(Gy) = {a™0b"™ | n > 0} U {a™1b* | n > 0}
andG, is no LL(k) grammar for anyc > 1. To see this we consider the two leftmost derivations
S= A l:> akob*

S =— B = dF1p?*
Im

ilm

3.3 Top-downSyntax Analysis 65

Gyis fornok > 1 anLL(k) grammar since for eadh > 1 it holds (a*0b%)|;, = (a*1b%*)|, but the
right sidesA and B for S are different. In this case one can show that forkng: 1 there exists an
LL(k)-grammar for the language(G4). O

Theorem 3.3.1 The reduced context-free gramn@r= (Vy, Vr, P,S) is anLL(k) grammar if and
only if for each two different productiond — 5 andA — ~ of G holds:

firsty,(Ba) N firsty(ya) = 0 for all a with S zj" wAa

Proof. To prove the direction, = ", we assume(were anLL(k) grammar, but there existed an
x € firsty(Ba) N first, (ya). According to the definition ofirst;, and becausé is reduced there exist
derivations
S == uAa = ufa == uzxy
lm lm Im

S = uAo = uya = uxrz,
im im m

where in in the casér| < kit must holdy = z = . § # ~ implies thatG can not be arLL(k)
grammar—a contradiction to our assumption.
To prove the other direction, < ", we assume(were not anL L (k) grammar. Then there exist
two leftmost derivations
S = vAa = ufBa = ux
lm lm lm

S == vAa = uya == uy
lm lm lm

with x|, = y|x, whereA — 3, A — ~ are different productions. Then the warfj, = y| is contained
in firsty (Ba) N first, (ya) — a contradiction to the claim of the theorent

Theorem 3.3.1 states that in &d.(k) grammar the application of two different productions toféle
sentential form always leads to differémprefixes of the remaining input. Theorem 3.3.1 allows to
derive useful criteria for membership of certain subclasdd. L (k) grammars. The first concerns the
casek = 1.

The seffirst; (Ba) N firsty (va) for all left-sentential formsv A« and any two different alternatives
A — fandA — v can be simplified tdirst; (5) Nfirst; (), if neither nor~ produce the empty word
e. This is the case if no nonterminal 6fis e-produktiv.

Theorem 3.3.2Let G be ane-free context-free grammar, that is, without productiofishe form
X —e. ThenG is an LL(1) grammar if and only if for each nonterminal with the alternatives
X —a1]...|a,the setdirst; (aq), . .., first; (a,,) are pairwise disjoint.

In practice, it would be too hard a restriction to forkighroductions. Consider the case that one of the
two right sidess or v would produce the empty word. If bothas well asy produce the empty word
G can not be arl. (1) grammar. Let us, therefore, assume that= ¢, but thate can not be derived

from ~. However, then holds for all left-sentential formda, v’ Aa/':

firsty (Ba) Nfirsty (yo!) = firsty (Ba) N Afirsty () Oy firsty (o)
= firsty (Ba) N firsty ()
= firsty (Ba) N firsty(ya)
=0

This implies that

firsty () ©1 follow; (A) N first;(y) ©; follow; (A)
= U{firsti(Ba) | S l:*> uAa}t N J{first; (yo') | Sl:*> u' Ao’}

.

We, hereby, obtain the following theorem:

66 3 Syntactic Analysis

Theorem 3.3.3 A reduced context-free grammétis an LL(1) grammar if and only if for each two
different productionst — 3 andA — ~ holds

first; (8) @1 followy (A) N firsty () © follow; (A) =0 .
O

The characterization of Theorem 3.3.3 is easily checkedirirast to the characterization of The-
orem 3.3.1. An even more easily checkable formulation isiokd by exploiting properties of 1-
concatenation.

Corollary 3.3.3.1 A reduced context-free gramm@ris anL L(1) grammar if and only if for all alter-
nativesA — «; | ... | a, holds

1. firsty(a), ..., firsty(«,) are pairwise disjoint; in particular, at most one of theds sentaing;
2. ¢ e firsty (o) impliesfirst; (a;) Nfollow; (A) =0 foralll1 < j <mn, j#i. O

We extend the property of Theorem 3.3.3 to arbitrary lengths1 of lookaheads.
A reduced context-free grammér= (Viy, Vir, P, S) is calledstrong L L(k) grammar, if for each
two different productionslt — 3 andA — ~ of a nonterminald always holds

firsty () O followy, (A) N first,(y) @y follow, (A) = 0.

According to this definition and Theorem 3.3.3 evérk(1) grammar is a stron@ L (1) grammar.
However, anLL(k) grammar fork > 1 is not automatically a stron§Z(k) grammar. The reason is
that the sefollow (A) contains the follow words dll left sentential forms with occurrences 4f In
contrast, the.LL(k) condition only refers to follow words ajneleft sentential form.

Example 3.3.5Let G be the context-free grammar with the productions
S — aAaa | bAba A—bl|e

We check:

1. Fall: The derivation starts with = aAaa. Itholds firstz(baa) N firstz(aa) = 0.
2. Fall: The derivation starts with = bAba. It holds firsta(bba) N firsta(ba) = 0.

HenceG is anLL(2) grammar according to Theorem 3.3.1. However, the grantimiarnot a strong
LL(2)-grammar, because

firsta(b) ©2 followy(A) N firsty(e) ©2 followy(A)
= {b} ©®2{aa,ba} N {e} ®2 {aa,ba}
= {ba,bb} N {aa,ba}
= {ba}

In the examplefollow; (A) is too undifferentiated because it collects terminal fellwords that may
occur indifferentsentential forms. O

3.3.3 Left Recursion

Deterministic parsers that construct the parse tree fanghe top downcannot deal witheft recursive
nonterminals. A nonterminal of a context-free grammag is called left recursive if there exists a

derivation4 =& ApB.

Theorem 3.3.4 Let G be a reduced context-free gramm@ris not anL L(k) grammar for any: > 1
if at least one nonterminal of the gramngiis left recursive.

3.3 Top-downSyntax Analysis 67

Proof. Let X be a left recursive nonterminal of gramn@Gir For simplicity we assume th&t has a
productionX — X j. G is reduced. So, there must exist another produckion «. If X occursin a

left sentential form, that is§ % uXy, the alternativeX — X 3 can be applied arbitrarily often. For

eachn > 1 there exists a leftmost derivation
S % wXry l:n> wX [y
Let us assume that gramm@amwere anL L (k) grammar. Theorem 3.3.1 implies
first, (X a"T1y) Nfirst, (as™y) = 0.
Due toX — o we have

firsty (aB3" T 1y) C first, (X 5" T1),

hence also
firste (8" y) N firsty,(af™y) = 0.

If 3 == ¢ holds we immediately obtain a contradiction. Otherwise ciweose: > k and again obtain
a contradiction. Henc&; can not be arl L (k) grammar. O

We conclude that no generator &f.(k) parsers can cope with left recursive grammars. However,
each grammar with left recursion can be transformed intcaangrar without left recursion that de-
fines the same language. Let us assume for simplicity thagrdm@marG has nos-productions (see

Exercise??) and no recursive chain productions, that is, there is naemorinal A with A % A. Let

G = (Vn,Vr, P,S). We construct folG a context-free gramma’ = (V,, Vp, P/, S) with the same
setVr of terminal symbols, the same start symbBoh setV’}, of nonterminal symbols

Vi =VNU{(A,B) | A,B € Vy},

and a set of productionB’

e IsB — af € P foraterminal symbok € Vr, thenA — a8 (A, B) € P’ foreachA € Vy;
e IsC — BB € Pthen(4,B) — 3(A,C) € P,
e Finally, (4, A) — ¢ € P'forall A € Vy.

Example 3.3.6 For the grammag, with the productions

E—-E+T|T
T—-Tx«F|F
F—(E)|Id

we obtain after removal of non-productive nonterminals

E — (E)(E,F) |Id(E, F)
(E,F) — (E,T)

(E,T) — «F(E,T)| (E,E)
(E,E) — +T(E,E) | ¢

T — (E)(T,F) | d(E, F)
(T,F) — (T,T)

(T, Ty — xF(T'\T) | e

F — (E)(F,F) | Id(F,F)
(F, F) — €

GrammarG, has three nonterminals and six productions, gram@ameeds nine nonterminals and
15 productions.

68 3 Syntactic Analysis

The parse tree fod + Id according to grammag, is shown in Fig. 3.11a), the one according
to grammaiG; in Fig. 3.11(b). The latter one has a definitely different structure. Iitely, the gram-
mar generates directly the first possible terminal symbdlthen in a backward fashion collects the
remainders of the right sides, which follow the left-sidentesminal symbol. The nonterminéli, B)
stands for the job to return fro back toA. 0O

We convince ourselves that the gramr@drconstructed from gramma# has the following properties:

e GrammarG’ has no left recursive nonterminals.
e there exists a leftmost derivation
A= By=—a
= By=>aby

if and only there exists a rightmost derivation

A=>af (4, B) ? afy (A, A)

in which after the first step only nonterminals of the foff, Y') are replaced.

The last property implies, in particular, that gramm@randG’ are equivalent, i.e., thdt(G) = L(G’)
holds.

In some cases, the grammar obtained by removing left resuisianL L (k) grammar. This is the
case for grammafz, of Example 3.3.6. We have already seen that the transfasmadiremove left
recursion also has disadvantages. hdie the number of nonterminals. The number of nonterminals
as well as the number of productions can increase by a fatter4o1. In large grammars, it might
be not advisable to perform this transformatimanually A parser generator however, could do the
transformation automatically and also generate a proghamtould automatically convert parse trees
of the transformed grammar back into parse trees of ther@ligirammar (see Exerci8€ of the next
section). The user wouldn’t even see the grammar transtawma

(a) (0)

Fig. 3.11. Parse trees fdd + Id according to gramma, of Example 3.3.6 and according to the grammar after
removal of left recursion.

Example 3.3.6 illustrates how much the parse tree of a wardrding to the transformed grammar
can be different from the one according to the original grammhe operator sits somewhat isolated

3.3 Top-downSyntax Analysis 69

between its remotely located operands. An alternativedetimination of left recursion are grammars
with regular right sides, which we will treat later.

3.3.4 StrongLL(k) Parsers

input tape

HEEEN

output tape

parser table

control

stack

Fig. 3.12. Schematic representation of a strahg(k)-Parser.

Fig. 3.12 shows the structure of a parser for strddg k) grammars. The prefix of the input is
already read. The remaining input starts with a prefof lengthk. The stack contains a sequence of
items of the context-free grammar. The topmost item, theastate 7, determines whether

e to read the next input symbol,
e to test for the successful end of the analysis, or
e to expand the actual nonterminal.

Upon expansion, the parser uses the parser table, to dedecbitrect alternative for the nonterminal.
The parser tablé/ is a 2-dimensional array whose rows are indexed by the noinafs and whose
columns are indexed by words of length at mosit represents a selection function

Vn x Vi — (Vr UVy)* U {error }

which associates each nonterminal with the one of its atems that should be applied based on the
given lookahead. It could also signal an error if no alteueagxists for the combination of actual state
and lookahead. LéX' — [3.Y'v] be the topmost item on the stack anble the prefix of lengttk of the
remaining input. IfM Y, u] = (Y — «) then[Y — .a] will be the new topmost stack symbol and the
productionY” — « is written to the output tape.

The table entries i/ for a nonterminall” are determined in the following way: L&t — a4 |
... | a, be the alternatives fdr". For a strongLL (k) grammar, the sefirst; («;) @ follow, (Y') are
disjoint. For each of the € first,(aq) O follow, (Y) U ... U, first, (o,) @ follow (Y") is therefore

MY, u] «— oy ifand only if w € first;(a;) ©y followy (Y)

Otherwise MY, u] is set toerror . The entryM[Y, u] = error means that the actual nonterminal and
the prefix of the remaining input don’t go together. This nmetirat a syntax error has been found. A

70 3 Syntactic Analysis

error-diagnosis and error-handling routine is startedctvivill attempt to continue the analysis. Such

approaches will be described in Sectf?n

Fork = 1, the construction of the parser table is particularly senBlecause of Corollary 3.3.3.1, it
works withoutk-concatenation. Instead, it suffices to te$br membership in one of the sdisst; («;)

and maybe irfollow; (Y").

Example 3.3.7 Table 3.3 is theL L(1)-parser table for the grammar of Example 3.2.13. Table 3.4

describes the run of the associated parser for inputd#. O

L ¢ [H [+ | » [W |#]
S E error error error E error
E ||(E)(E,F)|error error error |ld (E, F)| error
T ||(E)(T,F)|error error error |Id (T, F)| error
F ||(E)(F, F)|error error error |Id (F, F)| error

(E,F)|| error |(E,T)| (E,T) (E,T) error |((E,T)

(B, T)|| error |(E,E)| (E,E) |«F(E,T)| error |(E,E)
(E,E)|| error e |+T(E,E)| error error 5
(T, F)|| error |({(T.T)| (T.T) (T, T) error | (T,T)
(T,T)|| error € € « (T, T)| error €
(F,Fy|| error € 5 € error 5

Table 3.3. LL(1) parser table for the grammar of Example 3.2.13.

Stack Input
[S — .E] Id * Id#
[S— .E][E — Ad(E, F)] Id * Id#
[S— .E|[E —Id.(E, F)] «ld#
[S— .E|[E —Id.(E,F)](E, F) — .(E,T)] «ld#
[S— .E|[E—Id.(E,F)|](E,F)— .(E,T)](E,T) —.* F(E,T)] «|d#
[S— .E|[E—Id.(E,F)](E,F) — .(E,T)](E,T) — = .F(E,T)] Id#
[S— .E|[E—Id.(E,F)|(E,F) — . (E,T)]{E,T) — = .F(E,T)][F — .\d(F, F)] Id#
[S— ElE—Id. (B F(E,F) — . (E,T)(E,T) = « .F(E,T)|[F —Id.(F, F)] #
[S— .El[E—Id.(E,N(E, F) — . (B,DKE,T) = + .F(E,T)|[FF—d.(F, F)](F, F) —.] |#
[S— .E][E—Id.(E,F)|](E,F)— .(E,T)](E, T) — % .F(E,T)][F —Id(F, F)] #
[S— .E|[E—Id.(E,F)|](E,F)— .(E,T)][(E, T) — % F. (E,)] #
[S— .E][E—d.(E,F)|](E,F)— .(E,T)](E, T) — « F.({E,T)](E,T) — . (E, E)] #
[S— .El[E—Id.(E,N(E,F) — . (E,D(E,T) = « F.(E,T)](E,T) — .(E, E)](E, E) —]| #
[S— ElIE—Id. (B M(E,F) — . (E,T(E,T) = « F.(E,T)](E,T) = (E, E)] #
[S— .El[E—Id.(E, (B, F) — (E,D(E,T) = +« F(E,T).] #
[S— .E][E—Id.(E,F)][(E,F)— (E,T).] #
[S— .E|[E —Id(E, F)] #
(s — E] #

Output:

(S = E) (E—d(E,F) (E, F) = (E,T)) (E,T) = =« F(E,T)) (FF — Id (F, F))

Our construction ofLL(k) parser are only applicable &trong LL(k) grammars. This restriction,

(FFYy —¢) (B, T) —

Table 3.4. Parser run for inpuld = I d#

however, is not really severe.

(B, E)) (E, E) —

5

3.3 Top-downSyntax Analysis 71

e The case occurring most often in practice is the dase1, and each L(1) grammar is a strong
LL(1) grammar.

e If a lookaheadt > 1 is needed, and is the grammaAL(k), but not strongLL(k), a general
transformation can be applied converting the grammar irdsang L L(k) grammar that accepts
the same language. (see Exercise 7).

We do, therefore, not describe a parsing method for arlittdr(k) grammars.

3.3.5 LL Parsers for Right-regular Context-free Grammars

Left-recursive nonterminals destroy the LL property of t-free grammars. Left recursion is mostly
used to describe sequences and lists of syntactic objietpdrameter lists and sequences of operands
connected by an associative operator. These can also lréeedty regular expressions. Thus, we want
to offer the best description comfort by admitting regubgpressions on the right side of productions.

A right-regular context-free grammar is a tuplé = (Vy, Vi, p, S), whereVy, Vi, S are as usual the
set of nonterminals, the set of terminals, and the start symb Vx — RAIs now a function from the
set of nonterminals into the sB® of regular expressions ovély U V. A pair (X, r) with p(X) = r
is written asX — r.

Example 3.3.8
A right-regular context-free grammar for arithmetic exggiens is

Ge = ({S,E,T,F},{id,(,),-ﬁ-,—,*,/},p, 5)7

wherep is the following function {{’ and’}’ are used as meta-characters to avoid the conflict with the
terminal symbol$(’ and’)’):

S—F

E—T{{+|-}T}"

T — F{{x|/} F}”

F— (B)|id O

Definition 3.3.2 (regular derivation)
Let G be a right-regular context-free grammar. The relat;r%efp on RA directly derives leftmost,

regular, is defined by:

@ wXp = waf mita=p(X)
(b) w(r1|...|rn)ﬁﬁnwriﬁ flurl<i<n
© w(r)p o wh

@ w(r) s = wr ()

Let R:} be the die reflexive, transitive closure g‘z:} . The language defined Ity is L(G) = {w €

VT|Sﬁw} |

Example 3.3.9
A regular leftmost derivation for the woid + id id of grammarG, of Example 3.3.8 is:
S = FE = T{{+|-}T}*
R,lm R,Im
U AE S =Ty
o WA H{ L+ FF {3 T}

= T

72 3 Syntactic Analysis

= id{{+|-)1)"
A {3
ﬁid + T{{+|-}T}*
i F{{ {3
i+ {(E)idH{{]/HEy{{+] =31}
i id {{x|/ Y {{+H =T
i id x| YT
RTnid +id « F{{x|/}F}*{{+|-}T}*
mr i id s« {(B)id {3
ﬁid +id «id{{«|/}F}*{{+|-}T}*
ﬁid +id xid{{+|-}T}"
ﬁid +id*xid O
Our goal is to develop an RLL parser, that is, a determintsiicdown parser for right-regular
context-free grammars. This is the method of choice to implat a parser as long as no powerful and
comfortable tools offer an attractive alternative.
The RLL parser will produce a regular leftmost derivationdoy correct input word. Looking at
the definition above makes clear that the case of expansjera(@onterminal is replaced by its only

right side—is no longer critical. Instead, the cases (B)afal (d) need to be made deterministic.
We will call a parser for a right-regular context-free graaran RLL(1) parser if it

e for each regular left-sentential form(r, | .. .| r,)5 can take the decision for the right alternative,
o for each regular left-sentential form(r)* 5 can take the decision for the continuation or the termi-
nation of the iteration

based on the next input symbol of the remaining input. Wesfearsome notions to the case of right-
regular context-free grammars.

Definition 3.3.3 (regular subexpression)

r;, 1 <14 < n,isdirect regular subexpressionof (r1 |...|r,) and(ry ... r,); r is direct regular
subexpressiorvon (r)* and ofr; r, ist regular subexpressionof ry, if 1 = ro or if ry is a direct
regular subexpression ef or regular subexpression of a direct regular subexpresdion O

Definition 3.3.4 (extended context-free item)

A tuple (X, a, 3,7) is anextended context-free itemof a right-regular context-free grammafr =
VN, Vr,p,S) if X € Vy, o, 8,7 € (VN UVZU{(,), "],e}h)*, p(X) = Bay and« is regular
subexpression gfary. This item is written a$X — [f.avy]. O

Realizing an RLL(1) parser for a right-regular contextefggammar uses agdinst; - andfollow; sets,
this time of regular subexpressions of right sides of prtduas.

first; - and follow; - Computation for Right-regular Context-free Grammars

The computations dirst; - andfollow; -sets for right-regular context-free grammars can agairepe
resented as pure union-problems, and can, therefore, beeefly solved. In the same way as in the
conventional case, this starts with the computatioa-pfoductivity. The equations far-productivity
can be defined over the structure of regular expressionse-neductivity of right sides transfers to
the nonterminal of the left side.

3.3 Top-downSyntax Analysis 73

epga) = false fora € Vp

epge) = true

epsr*) = true

epsX) =epgr), if p(X)=rforX € Vy

epg(ri|...[r)) = \/epiri)

7

(ep9

eps(r1...m)) = /\epgr:)

i=1

Example 3.3.10 (Continuation of Example 3.3.8)
For all nonterminals of7. holds:epgX) = false O

After e-productivity is computed, the-free first-function can be computed. This is specified by the
following equations:

eff(e) =0

eff(a) = {a}

eff(r*) = eff(r

eff(X) = eff(r), if p(X) =7 (eff)
eff((r]...[ru)) = _U_ eff(r)

eff((ri...m)) = <5J< Aeff(r) |\ epgri)}

Example 3.3.11 (Continuation of Example 3.3.8)
Theeff- and, therefore, also tHest; -sets for the nonterminals of gramm@y are
first; (S) = firsty (E) = first; (T') = first; (F) = {(,id} O

e-productivity ande-free first-functions could be defined recursively over ttracture of regular
expressions. Therst;-set of a regular expression is independent of the contexhioh it occurs.

This is different for thefollow; -set; two different occurrences of a regular (sub-) expoessave
in general differenfollow; -sets. In realizing RLL(1) parsers, we are interested infollew; -sets of
occurrences of regular (sub-) expressions. A particulanwence of a regular expression in a right side
corresponds to exactly one extended regular item in whieldtt is positioned in front of this regular
expression. The following equations fiotlow; assume that concatenations and lists of alternatives are
surrounded on the outside by parentheses, but have no sipesrftarentheses inside.

(1) followy([S" — .S]) = {#} The eof symbol#’ follows after each input word.
) follow; ([X — -+ (r|-- ||~ |rm)--+]) =
followy ([X — -+« .(rq| -+ |ri] -+ |rm) --+]) forl<i<mn
(3) fOHOWl([X*)(Tﬂ’lJrl)]):
f0||0W1([X*> (rlrz+1)])7
eff(riz1) U if epgr; 1) = true

0 otherwise
(4) followy([X — - (r1 - rp_1.r)---]) = (follow,)
follow ([X — -+ .(r1 - rp_1r) -+])

(6) followy([X — ---(.r)*---]) =
eff(r) Ufollow ([X — -+ .(r)*---])

(6) follow;([X — .r]) =follow;([Y — -+ . X ---])

74 3 Syntactic Analysis

Example 3.3.12 (Continuation of Example 3.3.8)
Thefollow; -sets for some items to gramm@y are:
follow; ([S — .E]) = {#}

follow, ([E — T.{{+|-}1}]) &

follow; ([S — .E]) U follow; ([F — (.E)]) =

({#} Ufollow, ([F — (.E)))) £ {), %}

follow, ([T" — F{{+|/}F}*]) = {+, -,), #} O

To compute solutions foeff andfollow; as efficiently as possible, that is, in linear time, these
equation systems need to be brought into the form

FX) =g uJUr) | X RY}

with a known set-valued functiojpand a binary relatio®.

In the computation oéff the base set ok and the set of nodes of the directed graph inducef by
is the set of regular (sub-) expressions occurring in thelypecton. A directed edge froll to Y exists
if and only if eitherY is a direct subexpression &f andY” contributes to théirst;-set of X, or if X is
a nonterminal (occurrence) aidits right side. The functiog is only defined to be non-empty for the
case of a terminal symbols.

In the computation ofollow; the base set is the set of extended items, and the relationiates
such itemgj with an itemi, that contribute to théollow; -set ofi. The functiong is defined using the
already computedff-sets.

Definition 3.3.5 (RLL(1)-grammar)

A right-regular context-free gramm&*¥ = (Viy, Vi, p, S) is calledRLL(1) grammar if for all ex-
tended context-free items

[X — - .(r1] - |rn) -] holds:

firsty (r;)®1follow ([X — <+ .(r1] - |rn) -+]) N

first; (r;)@®1follow; ((X — -+ .(r1]| -+ |ry) ---]) = 0 forall i # j,

and for all extended context-free iteff® — --- .(r)* - - -] holds:

firsty (r) N follow; ([X — --- .(r)*---]) = 0 andepgr) =false O

Once thefirst;- andfollow; -sets for a right-regular context-free grammar are conthwdad the
check for the RLL(1)-property has been successful, an RLjhétser for the grammar can be generated.
Two different representations are popular. The first césgifa driver, fixed for all grammars, and a
table specifically generated for each grammar. The drivdaias the table with the actual item and the
next input symbol, more precisely, some integer codes fesahtwo. The selected entry in the table
indicates the next item or signals a syntax error.

The second representation is by a program. This progranisteessentially of a set simultaneously
recursice procedures, one per nonterminal. The procedurshterminalX is in charge of analyzing
words forX. We first introduce the table version of RLL(1) parsers.

RLL(1) Parser for Right-regular Context-free Grammars (Ta ble Version)

The RLL(1) parser is a deterministic pushdown automatoe. Jdrser tabléd/ represents a selection
functionm : It x Vp ~ Itg U {error}. The parser table is consulted when a decision has to be taken
by considering lookahead into the remaining input. Thewsfd! has only rows for

e items in which an alternative needs to be chosen, and
e items in which an iteration needs to processed;

i.e. the functionm is defined for items of the formiX — --- .(ry|---|r,)---] and of the form
(X — o (r)* -]

3.3 Top-downSyntax Analysis 75

The RLL(1) parser is started in an initial configurati@a[S’ — .S], w#). The actual item, the topmost
on the stack, determines whether the parser table shoulohsalited. If the table needs to be consulted
M p, a] — if not error — indicates the next item for the actual itgnand the actual input symbal If
M][p,a] = error , a syntax error has been discovered. In the configuré§fds’ — S.], #), the parser
accepts the input word.

The other transitions are:

S(X — - .a--],a) =X = -a]
S([X = .Y --]¢) —[X = Y Y = p(Y)]
([X—= - Y- Y =p(Y)]e)=[X— ---Y.--]

In addition, there were some transitions, for example fidin — --- (- |r;.|--+)---] t0 [X —
o« (-++|ri] -+ +). - -], which neither read symbols, nor expand nonterminals, @educe to nontermi-
nals. They can be avoided by modifying the transition florctn the following way:

WX = (o)] = @ X = (ol)]
(3) [X = o ()7] S @K = ()]
(B)[X — oo (1 1n) -] = (6)[X = (i)

If a transition ofd leads to(1), it is made to lead to the context-free ité®). If it leads to(3), it is
made to lead td4), and from(5) directly to(6).

We present now the algorithm for the generation of the RLIp@rser tables.
Algorithm RLL(1)-GEN

Input: RLL(1)-grammaiG, first; andfollow; for G.

Output: parser tablé\/ for RLL(1) parser forG.

Method: For all items of the formX — --- .(ry|---|ry,)---] set
M(X = - (r]-|rn)--+]ya) =[X — -+ (- |r4|--+) -], fora € firsty(r;) and if in ad-
dition e € first; (r;) then also fow € follow; ([X — -« .(ry| - |r) -+]).

For all items of the formX — --- .(r)*-- -] set
M(X — - .(r)*---],a) =

[X — - (r)* -] if a €firsty(r)

(X — - (r)*.---] ifa efollow; ([X — - .(r)*---])

Set all not yet filled entries terror.

Example 3.3.13 (Continuation of Example 3.3.8)
The parser table to grammét.. (Rows and columns are exchanged for layout reasons.)

[E - TA{+|-37}] [T — FA{+|/}F}"]
+[E =T + |-} THPNT — F{{=|/}F}]
—|[E = T{{+|. =T} |[T— F{{|/} F}"]
#|[E — T{H{+|=3T] ([T — F{{|/}F}*]
) |[E = TH{+=3T] ([T — F{{=|/}F}]
x |error [T — F{{. «|/}F}"]
/ |error [T — F{{x|./}F}*]

Note that the construction of the table uses compressiom the item(E — T'.{{+|—}T'}"] a di-
rect transition undes- into the item[E — T'{{. 4+ |-}7T'}*] was entered. Analogously for and
for the item[T" — F.{{x|/}F'}*] underx and/. Thereby, all items of the fori¥ — T{.{+|—}T}*]
and[T — F{.{x|/}F}*] can be eliminated, and at compile time, the correspondarsitions can be
saved. O

Recursive descent RLL(1) Parser (Program Version)

A popular implementation method of RLL(1) parsers is in thierf of a program. This implementation
can be automatically generated from an RLL(1)-grammar tiuist; - andfollow; -sets, but it can also

76 3 Syntactic Analysis

be written in the programming language of one’s choice. Hitel is the implementation method as
long as no generator tool is available.

Let a right-regular context-free gramm@ar= (Viy, Vi, p, S) with Vy = {Xo, ..., X, }, S = X,

p =4{Xo — ap, X1 — a1,...,X,, — «a,} be given. We present recursive functignsprogr and
progr that generate a so-callegcursive descent parséom the gramma¢; and the computefirst; -
undfollow; -sets.

For each production, this also means for each nontermiina procedure with the namg is
generated. The constructors for regular expressions orghesides are translated into programming
language constructs such as switch-, while-, do-whileestants, into checks for terminal symbols,
and into recursive calls of procedures for nonterminal firist; - andfollow; -sets of occurrences of
regular expressions are needed, for instance, to seledgtiteone of several alternatives. Such an oc-
currence of a regular (sub-) expression corresponds gxtaah extended context-free item. The func-
tion progr is, therefore, recursively defined over the structure otexifree items of the grammar.
The following functionFiFo is used in the case distinction for alternativéso([X — --- .5---]) =
firsty (8)® followy ([X — ---.3---]).

struct symbol nextsym;

[+ Stores next input symbol in nextsym/
void scan ();

[/« Prints the error message and
stops the run of the parser/
void error(String errorMessage);

/+ Announces the end of the analysis and
stops the run of the parser/
void accept();

/+ Translating the input grammarsx/
p_progr(Xo — ao);
p_progrX; —a);

p_progrX, — ay);

void parser () {
scan ();
Xo();

if (nextsym == "#")
accept();

else
error("...");

}

/+ For all rules like this... */
p_progr(X — .«a)

/+ ...we create an according method like this/

void X() {
progr([X — .a]);

void progr([X — - .(aqfaz| - |ag-1]ag)---]) {

3.3 Top-downSyntax Analysis 77

switch () {
case (FiFo ([X — -+ (a1|ag| - |ag—1|ak) -])
.contains(nextsym)):
progr ([X — - (a|og| - |o—1fok)---1);
break;
case (FiFo([X — -+ (aq|.az2| - |ag—1|ak)---])
.contains(nextsym)):
progr ([X — - (aufazf - |op—s|ok)---1);
break;

case (FiFo([X — - (a1]az| - |.ag—1|ak) 1)
.contains(nextsym)):

progr([X — (s [.ar_tlar) - 1)

break;

default:
progr([X — ---(ai]az|--|og—1|.ar)---1);

}
}

void progr([X — - (g -ag)---
progr([X — - (aiag---ag)---1);
progr([X — - (aj.az---ax)---1);

DA

progr(.[X_>...(Oé1Q2... ak)]),
}

void progr([X — - .()*---]) {
while (FIRSTi(«). contains (nextsym)) {
} progr([X — - .a---]1);

}

void progr([X — - .(a)T---]) {
do {
progr([X — - .a---1);
} while (FIRSTi(«).contains(nextsym));
}

void progr([X —---.e---]) {}
Fora € Vris

void progr([X — - .a---]) {
if (nextsym ==a)
scan ();
else
error ("...");

ForY € Vy is
void progr([X —---.Y---]) = void Y()

How does such a parser work? Procedbliréor a nonterminalX is in charge of recognizing words
for X. When it is called, the first symbol of the word to recognize Almeady been read by the combi-

78 3 Syntactic Analysis

nation scanner/screener, the procedigan When procedur& has found a word foX and returns,
it has already read the symbol following the found word.

The next section describes several modifications for thdlivagof syntax errors.

We now present the recursive descent parsers for the régjutar context-free grammay for
arithmetic expressions.

Example 3.3.14 (Continuation of Example 3.3.8)
The following parser results from the schematic transtatiothe extended expression grammar. For
terminal symbols their string representation is used.

symbol nextsym ;

[/« Returns next input symbok/
symbol scan ();

/[« Prints the error message and
stops the run of the parser/
void error(String errorMessage);

/+ Announces the end of the analysis and
stops the run of the parser/
void accept();

void S() {
EQ);
}

void E() {
TO;
while (nextsym == "+" || nextsym ==-"") {
switch (nextsym) {
case "+":
if (nextsym == "+")
scan ();
else
error ("+_ expected");
break;
default:
if (nextsym == *")
scan ();
else
error ("-_expected");

TO;
}
}

void T() {
FO;
while (nextsym == %" || nextsym == "/") {
switch (nextsym) {
case "x":
if (nextsym == "%")
scan ();

3.4 Bottom-up Syntax Analysis 79

else
error ("x_expected");
break;
default:
if (nextsym == "/")
scan ();
else
error("/_expected");

FO;
}
}

void F() {
switch (nextsym) {
case "(":
EQ);
if (nextsym == ")")
scan ();
else
error(")_expected");
default:
if (nextsym == "id")
scan ();
else
error("id_expected");
}
}

void parser () {
scan ();
S();
if (nextsym == "#")
accept();
else
error ("# expected");

Some inefficiencies result from the schematic generatidghisfparser program. A more sophisti-
cated generation scheme will avoid most of these ineffidéenc

3.4 Bottom-up Syntax Analysis

3.4.1 Introduction

Bottom-upparsers read their input likep-dowrparsers from left to right. They are pushdown automata
that can essentially do two kinds of operations:

e Read the next input symbdilift), and
e Reduce the right side of a productioh — « at the top of the stack by the left side of the
production feducs.

Because of these operations they are cadlgitt-reduceparsersShift-reduceparsers are right parsers;
they output the application of a production when they do aicédn. The result of the successful

80 3 Syntactic Analysis

analysis of an input word is a rightmost derivation in reeeseder becausshift-reduceparsers always
reduce at the top of the stack.

A shift-reduceparser must never miss@quiredreduction, that is, cover it in the stack by a newly
read input symbol. A reduction igquired if no rightmost derivation to the start symbol is possible
without it. A right side covered by an input symbol will neverappear at the top of the stack and
can, therefore, never be reduced. A right side at the topeoftack that must be reduced to obtain a
derivation is called dandle

Not all occurrences of right sides that appear at the top@ftthck are handles. Some reductions
performed at the top of the stack lead into dead ends, thalhey, can not continued to a reverse
rightmost derivation although the input is correct.

Example 3.4.1Let Gy be again the grammar for arithmetic expressions with thdyetions:

S - F
EFE — E+T | T
T - TxF|F
F — (E)|Id
Table 3.5 shows a successfubttom-upanalysis of the wordd = Id of Gy. The third column lists
actions that were also possible, but would lead into dead.dndhe third step, the parser would miss

a required reduction. In the other two steps, the alteraagductions would lead into dead ends, that
is, not to right sentential forms.O

||Stack| input||Erroneous alternative actions

Id * Id
Id x1d
F x |d||Reading of« misses a required reductign
T x1d|| reduction ofT" to E leads into a dead end
T x Id
T *1d
TxF reduction ofF' to T" leads into a dead end
T
E
S

Table 3.5. A successful analysis of the wold * Id together with potential dead ends.

Bottom-upparsers construct the parse tree from lle¢tom up They start with the leaf word of the
parse tree, the input word, and construct for ever largeséthe read input subtrees of the parse tree
by attaching the subtrees for the right sidef a productionX — « below a newly created node
upon a reduction by this production. The analysis is sudekE§a parse tree with root labed, the start
symbol of the grammar, has been constructed for the wholé imprd.

Fig. 3.13 shows some snapshots during the constructiorgfalse tree according to the derivation
shown in Table 3.5. The tree on the left contains all nodesdh@a be created when the ingdthas
been read. The sequence of three trees in the middle refgsekerstate before the handlex F'is
being reduced, while the tree on the right shows the compketse tree.

3.4.2 LR(k) Parsers

This section presents the most powerful deterministic oetthat worksbottom-up LR (k) analysis.
The letter says that the parsers of this class read their input feefirtd right, TheR characterizes

3.4 Bottom-up Syntax Analysis 81

&
=H-|
=

Fig. 3.13.Construction of the parse tree after reading the first synibaiogether with the remaining input, before
the reduction of the handIE « F', and the complete parse tree.

them as Ryht parserf is the length of the considered lookahead.

We start again with the item-pushdown automaknfor a context-free gramma¥ and transform
it into a shift-reduceparser. Let us look back at what we did in the caseopfdownanalysis. Sets of
lookahead words were computed from the grammar, which weed to select the right alternative for
a nonterminal aexpansion transitionsf P. So, theL L(k) parser decides about the alternative for
a nonterminal at the earliest possible time, when the nomitexl has to be expandefiR(k) parsers
follow a different strategy; they pursad possibilities to expand and to readgarallel.

A decision has to be taken when one of the possibilities tdicoe asks for a reduction. What is
there to decide? There could be several productions by whichduce, and a shift could be possible
in addition to a reduction. The parser uses the kesgmbols to take its decision.

In this section, first a.R(0) parser is developed, which does not yet consider any loalkhhe
Section 3.4.3 presents tisanonical LR (k) parser. In Section 3.4.3, less powerful variantd.éf(k)
are described, which are often powerful enough for prackaeally, Section 3.4.4 describes a error
recovery method fol.R(k). Note that all context-free grammars are assumed to be eeldafcnon-
productive and unreachable nonterminals and extended bwatart symbol.

The Characteristic Finite-state Machine to a Context-freeGrammar

We attempt to represeiil; by a non-deterministic finite-state machine,dteracteristic finite-state
machinech(G). SincePy is a pushdown automaton, this cannot easily work. An aduifispecifica-
tion of actions on the stack is necessary. These are ass@idh some states and some transitions of
ch(G).

Our goal is to arrive at a pushdown automaton who pursueo#hpial expansion and read tran-
sitions of the item pushdown-automaton in parallel and @tlyeduction decides which production
is the one to select. We define tblearacteristicfinite-state machineh(G) to a reduced context-free
grammarG. The states of the characteristic finite-state machiri€r) are the items$A — «a.(] of the
grammarG, that is, the states of the item pushdown-automadenThe set of input symbols of the
characteristic finite-state machink(G) is Vr U Vy, its initial state is the start itefjt” — ..S] of the
item pushdown-automatary;. The final states of the characteristic finit-state machia¢tee complete
items[X — «.]. Such a final state signals that the word just read corresptand stack contents of
the item pushdown-automaton in which a reduction with tleelpctionA — o can be performed. The
transition relationA of the characteristic finite-state machine consists ofriduesitions:

(X = a.Yf),e,[Y — 1)) for X -aYBeP, Y —-yeP
([X = a.Y],Y,[X — aY.f[]) for X -aYpBeP, YeVyUVp

Reading a terminal symbols in char(G) corresponds to ahift transition of the item pushdown-
automaton undet. ¢ transitions ofchar(G) correspond to the expansion transitions of the item

82 3 Syntactic Analysis

pushdown-automaton. Whethar(G) reaches a final stateX — «.] Ps undertakes the following
actions: it removes the itefX — «.] on top of its stack and makes a transition undefrom the new
state that has appears on top of the stack. This is a reduntior of the item pushdown-automaton
Pe.

Example 3.4.2Let Gy again be the grammar for arithmetic expressions with thdyrtions
S - F
E—-E+T|T

T >T+F|F
F— (B)|d

Fig. 3.14 shows the characteristic finite-state machinedmgrarG,. O

5— B —2=[5=E]
! E + T
[E— .E+T) [E— B+ T|—>E - E+.T]—|[E > E+T]
Y T
z‘:[E — .7 [E— T
Y
([T — T % F] a >HT—>T.*F]F**>{[T—>T*.F]}L> [T — T« F)]
Y 2
e [T — F]
Y
[[F = .(B)] e = B 2 = [F — (E)]
Y
= [F = a0 {[[F = 1]

Fig. 3.14. The characteristic finite-state machittear(Go) for the grammarzy.

The following theorem clarifies the exact relation betwe®n ¢haracteristic finite-state machine and
the item pushdown automaton:

Theorem 3.4.1 Let GG be a context-free grammar and: (Vi UV)*. The following three statements
are equivalent:

1. There exists a computatighs’ — .5],) I—;ar(c) ([A — «a.f],¢) of the characteristic finite-state
machinechar(G).)

2. There exists a computati¢p[A — «.0], w) boe ([S" — S.],¢) of the item pushdown-automaton
P such thaty = hist(p) « holds.

3. There exists a rightmost derivati61‘1r:*m> ~' Aw = ~afw withy =~'a. O

The equivalence of statements (1) and (2) means that woati$ethd to an item of the characteristic
finite-state machinehar(G) are exactly the histories of stack contents of the item powhdautomaton
Ps whose topmost symbol is this item and from whieh can reach one of its final states assuming
appropriate inputv. The equivalence of statements (2) and (3) means that aptiageomputation of

3.4 Bottom-up Syntax Analysis 83

the item pushdown-automaton for an input wardhat starts with a stack content€orresponds to a

rightmost derivation that leads to a sentential ferm where« is the history of the stack contenis
We introduce some terminology before we prove Theorem 3HBot a rightmost derivation

S’ %5 ~' Av = yav and a productioml — « we call« thehandleof the right sentential formyaw.

Is the right sidex = /3, the prefixy = '/ is called areliable prefixof G for the item[A — «’.3].
The item[A — «.] isvalid for . Theorem 3.4.1, thus, means, that the set of words undehvitéc
characteristic finite-state machine reaches an [tém- o/.0] is exactly the set of reliable prefixes for
this item.

Example 3.4.3 For the gramma¢z, we have:

right sentential form| handle | reliable prefixess|| reason
E+F F E,E+ E+F || S E—=E+T=E+F

T x1d Id T, T, TxId S:>T*F:>T*Id

Tm

a

In a non-ambiguous grammar, the handle of a right sentdatialis the uniquely determined word that
thebottom-upparser should replace by a nonterminal in the next redustemto arrive at a rightmost
derivation. A reliable prefix is a prefix of a right sentenfiaim that does not properly extend beyond
the handle.

Example 3.4.4We give two reliable prefixes @f, and some items that are valid for them.

relaible prefix | valid item reason

E+ [E— E+.T) SﬁEﬁEjLT
[T — .F) S=E+T=E+F
[F — .Id] S:*>E+F:>E+Id

(E + ([F—(B)] [S=(E+F) = (E+(E)
T — F| St (E+(T >7_m — (E+(F))
[F — .Id] S%(E—&—(F)ﬁ(E—&—(Id))

a

Has, in the attempt to construct a rightmost derivation feoad, the prefix: of the word been reduced
to a reliable prefixy, then each itenfX — «.f], valid for -, describes one possible interpretation of
the analysis situation. Thus, there is a rightmost dedveti which+y is prefix of a right sentential form
andX — «f is one of the possibly just processed productions. All sucklpctions are candidates for
later reductions.

Consider the rightmost derivation

S’ %? ~yAw = yafw

It should be extended to a rightmost derivation of a termiviaid. This requires that

1. g is derived to a terminal word, and after that,
2. « is derived to a terminal word.

Altogether,
S = vy Aw = yafuw = youw = Yurw —> TUVW
m m m m m

We now consider this rightmost derivation in the directiénealuction, that is, in the direction in which
a bottom-upparser constructs it. First, is reduced tay in a number of steps, thanto «, thenv to

(. The valid item[A — «.(] for the reliable prefixya describes the analysis situation in which the
reduction ofu to a has already been done, while the reduction tf 5 has not yet started. A possible
long-range goal in this situation is the application of theductionX — «f.

84 3 Syntactic Analysis

We come back to the question which language is accepted lphtracteristic finite-state machine
of Ps. Theorem 3.4.1 says thakG goes under a reliable prefix into a state that is a valid itentHis
prefix. Final states, i.e. complete items, are only valid&iable prefixes where a reduction is possible
at their ends.

Proof of Theorem 3.4.1. We do a circular proofl) = (2) = (3) = (1). Let us first assume

([S" — .S],7) Ifhar(c) ([A — «a.f],¢). By induction over the number of ¢ transitions we construct a

rightmost derivatiors’ %@ yAwW = yafw.

Istn = 0, dannisty = cund[4 — a.f] = [§" — .S]. Das’ = S’ gilt, ist die Behauptung in
diesem Fall erf"ullt. Isk. > 0, betrachten wir den letzten"Ubergang. Dann |"asst sich die Berechnung
of the characteristic automaton zerlegen in:

(18" = S| E, o (X = oA e) b (A= .afla) . (A - afe)

char(G) char(G)

wherey = 7/a. Nach Induktionsannahme gibt es eine rightmost derivaficE2 v/ Xw' == "o/ AB'w'

mit ' = +"«’. Da die grammaf; reduziert ist, gibt es ebenfalls eine rightmost derivatios= v.

Deshalb haben wir:
S L A Avw’ =2 v afw

mit w = vw’. Damitist die Richtundg1) = (2) bewiesen.
Nehmen wir an, wir h"atten eine rightmost derivatish=—= v’ Aw == ~v'aSw. Diese Ableitung
ES

["asst sich zerlegen in:

m m

S/ = Oéleﬁl %n> 041X11}1 %n> A %n> (041 . Oén)Xn(’Un .. .’Ul) —— (041 .. .an)aﬁ(vn . ..Ul)

for X,, = A. Mit Induktion nachn folgt, dass(p, vw) & ([S" — S.],¢) gilt for

G

p = [SI - al-Xlﬁl] oo [Xn—l - aanﬁn]
W = VVp ...0V1

soferns T:Zf v, 1 = 1 = e andX; = S. Damit ergibt sich der Schlugg) = (3).

F"ur den letzten Schluss betrachten wir einen Kellerinhattp’ [A — «.5] mit (p, w) F . ([s" —

K

S.],€). Zuerst "uberzeugen wir uns mit Induktion nach der Anzahl"tdberg"ange in einer solchen
Berechnung, dass notwendigerweise von der Form:

p’ = [S/ — Oél.Xlﬂl] [P [Xn,1 — Oéanﬂn]

ist for einn > 0 and X,, = A. Mit Induktion nachn folgt aber, dasg[S’ — .S5],~) Ehar(c) ([A —

a.f],e) giltfor v = ay ... ana. Day = hist(p), gilt auch die Behauptung (1). Damit ist der Beweis
vollst"andig. O

The Canonical LR(0) Automaton

In Chapter 2, we presented an algorithm which takes a ncerd@tistic finite-state machine and con-
structs an equivalent deterministic finite-state machiinés deterministic finite-state machine pursues
all paths in parallel which the non-deterministic automatould take for a given input. Its states
are sets of states of the non-deterministic automaton. §iiset constructiois now applied to the
characteristic finite-state machinkar(G) of a context-free gramma®. The resulting deterministic
finite-state machine is called tleanonicalL R(0) automaton foiG and denote it byL Ry (G).

3.4 Bottom-up Syntax Analysis 85

Example 3.4.5The canonicallL R(0) automaton for the context-free gramn@s of Example 3.2.2
on page 39 is obtained by the application of the subset aat&in to the characteristic finite-state
machinechar(Gy) of Fig. 3.14 on page 82. Itis shown in Fig. 3.15 on page 85alestare:

={[5—.E] ={[F—=(E), ={ [T —=Tx.F],
[E— .E+T], [E— .E+T], [F — .(F)],
[E—.T], [E—.T], [FF— .Id] }
[T — . T * FJ, [T — .T % F| s ={[F— (B,
[T — .F], [T — .F] [E—E.+T]}
[F'— (E)], [F'— .(E)]
9 ={[F—E+Tl],
[F— .Id] } [F— .Id] } T —T.«F]}
Si={[5—E] ={[F—1d]} T
[E—FE.+T]} :{[E—>E+ VAR :{[T T« Fl}
Sy={[E—T], [T —.T * F), n={1F=(E®1}
T —T.«F])} T — .F), Si2 =10
—{[T—F]} [F'—.(E)],
[F— 1d] }

Fig. 3.15. The transition diagram of th& R(0) automaton for the gramma¥, obtained from the characteristic
finite-state machinghar(Go) in Fig. 3.14. The error stat§;» = () and all transitions into it are left out.

The canonical. R(0) automatorl Ry (G) to a context-free gramma¥ has some interesting properties.
Let LRO(G) = (Qg, Vr U VN, Ac,qc.0, Fe), and |etAE Qg X (VT U VN)* — Q¢ be the lifting
of the transition functiom\s from symbols to words. We then have:

1. A% (gc,0,7) is the set of all items il for which - is a reliable prefix.
2. L(LRy(G)) is the set of all reliable prefixes for complete itefds— a.] € Z.

Reliable prefixes are prefixes of right-sentential formghay occur during the reduction of an input
word. When a reduction is possible that will again lead toghtrsentential-form This can only hap-
pen at the right end of this sentential form. An item valid &oreliable prefix describes one possible
interpretation of the actual analysis situation.

86 3 Syntactic Analysis

Example 3.4.6 E + I is areliable prefix for the grammai,. The stateAy, (So, £+ F') = Sz is also
reached by the following reliable prefixes:

oo, ((F, ((F,
T«(F, Tx((F, Tx*((F,
E+F, E+(F, E+((F,

The stateSs in the canonicallL R(0) automaton ta%, contains all valid items for the reliable prefix
E+, namely the items

[E—E+.T,[T— . Tx*xF],[T—.F|,[F—.Id,[F—.(F).

For E+ is a prefix of the right sentential fornk + 7" :

S—F — E+T = E+F = E+1Id
1 1 T
Valid are for instance [E — E + .7 [T — .F] [F' — .Id]

a

The canonicalLR(0) automatonL Ry (G) to a context-free gramma¥ is a deterministic finite-state
machine that accepts the set of reliable prefixes to comtéates. In this way, it identifies positions
for reduction, and, therefore, offers itself for the constion of a right parser. Instead of items (as
the item-pushdown automaton) this parser stores on itk states of the canonicalR(0) automaton,
that is setsof items. The underlying pushdown automaia is defined as the tupl&y = (Q¢ U
{f},Vr, Ao, qc.0,{f})- The set of states is the s@ of states of the canonicdlR(0) automaton
LRy (G), extended by a new stafe the final state. The initial state &% is identical to the initial state
qa.,0 of LRo(G); The transition relatiom\, consists of the following kinds of transitions:

Read: (¢,a,qdc(q,a)) € Aq, if da(g,a) # 0. This transition reads the next input symkobknd
pushes the successor statendera onto the stack. It can only be taken if at least one item of the
form [X — a.af3] is contained iny.

Reduce:(qq1 . .. qn,e,q0c(q, X)) € Aif [X — a.] € ¢, holds with|a| = n. The complete item

[X — «.] in the topmost stack entry signals a potential reductionmasy entries are removed
from the top of the stack as the length of the right side ingicaAfter that, theX successor of the
new topmost stack entry is pushed onto the stack.
Fig. 3.16 shows a part of the transition diagram df/a(0) automator’ Ry (G) that demonstrates
this situation. Thex path in the transition diagram correspondsdpentries on top of the stack.
These entries are removed at reduction. The new actual staeously below these removed
entries, has a transition und&r, which is now taken.

Finish: (¢¢04q,¢, f) if [— S.] € ¢. This transition is the reduction transition to the prodtrct
S’ — S. The property(S’ — S.] € ¢ signals that a word was successfully reduced to the start
symbol. This transition empties the stack and inserts tte sitatef.

The special casgX — .| merits special consideration. According to our descriptie| = 0 topmost
stack entries need to be removed from the stack upon thictiedyand a transition from the new,
and old, actual state underX should be taken, and the statk;(q, X) is pushed onto the stack.
This transition is possible since by construction it hotust with the item{--- — --- .X -- -] also the
item [X — .«] is contained in stateg for each right sidev of nonterminalX . In the special case of a
¢ production, the actual statecontains together with the itefp-- — --- .X ---] also the complete
item [X — .]. This latter reduction transitioextends the lengtbf the stack.

The construction oL Ry(G) guarantees that for each non-initial and non-final sjetteere exists
exactly one entry symbol under which the automaton can makanaition intog. The stack contents
q, - --,qn Mit go = g0 corresponds, therefore, to a uniquely determined word X, ... X, €
(Vr U Viy)* for which A (g, Xi+1) = ¢i4+1 holds. This wordv is a reliable prefix, and,, is the set
of all items valid fora.

3.4 Bottom-up Syntax Analysis 87

{ [;(_)23} }*X>< [—>X] }

< X - ol }

Fig. 3.16. Part of the transition diagram of a canonid¢ak(0) automaton.

The pushdown automatadh, just constructed is not necessarily deterministic. Thezewvao kinds
of conflicts that cause non-determinism:

shift-reduce conflict:a stateg allows a read transition under a symhokE V- as well as a reduce or
finish transition, and
reduce-reduce conflicta state; permits reduction transitions according to two differerductions.

In the first case, the actual state contains at least one[Xem «.a] and at least one complete item
[Y — ~.]; in the second case,contains two different complete itenfis — «.], [Z — (3.]. A stateq

of the LR(0) automaton with one of these properties is calldgl(0) inadequateOtherwise, we caly
LR(0) adequateEs gilt:

Lemma 3.4.For anL R(0) adequatestateg there are three possibilities:

1. The statey contains no complete item.

2. The state consists of exactly one complete itér — «.;

3. The statey contains exactly one complete itgp — .], and all non-complete items inare of the
form [X — «.Y], where all rightmost derivations fdf that lead to a terminal word are of the
form:

Y =5 Aw—w
m m

foraw e V5. O

Inadequate states of the canoniE&l(0) automaton make the pushdown autonfataon-deterministic.
We obtain deterministic parsers by permitting the parskrdk ahead into the remaining input to select
the correct action in inadequate states.

Example 3.4.7 The statesS;, S2 and.Sy of the canonical R(0) automaton in Fig. 3.15 arBR(0)
inadequate. In statg, the parser can reduce the right sidéo the left sideS (complete item.S — E.])
and it can read the terminal symbelin the input (item[E — E. + T). In stateS, the parser can
reduce the right sid& to E (complete itemE — T'.]) and it can read the terminal symbelitem
[T'— T. = F]). In stateSy finally, the parser can reduce the right sile+ 7' to E (complete item
[E — E + T.]), and it can read the terminal symbo{item [T — T. x F]). O

Direct Construction of the Canonical L R(0) Automaton

The canonical R(0) automaton. Ry (G) to a context-free grammal¥ needs not be derived through
the construction of the characteristic finite-state maehirar(G) and the subset construction. It can
be constructed directly fro®. The construction uses a functiak; . that adds to each setof items
all items that are reachable bytransitions of the characteristic finite-state machinee $&tA¢ - (¢)

is the least solution of the following equation

I=qU{[A— 4] |3X - aABeP: [X - a.Ap] €T}

Similar to the functiortlosure() of the subset construction it can be computed by

88 3 Syntactic Analysis

set(item) closure(set(item) q) {
set(item) result — g¢;
list(item) W «— list_of(q);
symbol X; string(symbol) «;
while (W £) {
item i «— hd(W); W «—tl(W);
switch (i) {
case [— _.X J:forall (a: (X —a)€eP)
if ([X — .of & result) {
result — result U {[X — .a]};
W —[X — .o : W;

default : break;

}

return result;

}

whereV is the set of symbol$” = Vi U V. The setQ) of states and the transition relatiaky; are
computed by first constructing the initial stagge o = Aq.({[S” — .S]}) and then adding successor
states and transitions until all successor states aradgliedhe set of constructed states. To implement
it we specialize the functionextState() of the subset construction:

set(item) nextState(set(item) q, symbol X) {
set(item) ¢’ — 0;
nonterminal A; string(symbol) «, [3;
forall (A, a, (3 : ([A — a.Xf] € q))
¢ —q U{[A— aX.[]};
return closure(q’);

}

As in the subset construction, the set of statrasesand the set of transitiortsans can be computed
iteratively:

3.4 Bottom-up Syntax Analysis 89

list(set(item)) W;
set(item) qo < closure({[S" — .S]});
states — {qo}; W — [qo];
trans « (;
set(item) q,q;
while (I £) {
q < hd(W); W —t(W);
forall (symbol X) {
q' < nextState(q, X);
trans — trans U {(q, X,q") };
if (¢ ¢ states) {
states «— states U {q'};
W —q¢ = W;

3.4.3 LR(k): Definition, Properties, and Examples

We call a context-free gramma¥ an LR(k)-grammar, if in each of its rightmost derivatios$ =
g = a1 = as - -+ = au,;,, = v and each right sentential forms occurring in the derivation
rm m m

e the handle can be localized, and
e the production to be applied can be determined

by consideringy; from the left to at mosk symbols following the handle. In ahR(k)-grammar,
the decomposition ody; into vSw and the determination of — (3, such thaty;_; = yXw holds is
uniquely determined by andw|;. Formally, we callG an LR(k)-grammar if

S’ % aXw = afw and
S’ T:jn> Yz = afy and
wlk = Yl implies a=yANX=Y ANz=y.
Example 3.4.8 Let G be the grammar with the productions
S—A|B A—adb|0 B —aBbb |1

ThenL(G) = {a™0b" | n > 0} U {a"1b*" | n > 0}. We know already that is for nok > 1 an
LL(k)-grammar. Gramma® is anLR(0)-grammar, though.
The right sentential forms @ have the form

S, A, B, a"adbb®, a"aBbbb’>", a"abb", a"albbb>"

for n > 0. The handles are always underlined. Two different posséslto reduce exist only in the
case of right sentential formg e Abb™ anda™aBbbb>" One could reduce™aAbb™ to o™ Ab™ and to
a™aSbhb™. The first choice belonged to the rightmost derivation

S T:;> a Ab" = a”aAbb"

the second to no rightmost derivation. The prefixof a™ Ab™ uniquely determines, whethet is the
handle, namely in the case= 0, or whether Ab is the handle, namely in the case> 0. The right
sentential forms™ Bb>" are handled analogouslyr

90 3 Syntactic Analysis
Example 3.4.9 The grammar7, with the productions
S — aAc A— Abb | b

and the languagé(G1) = {ab®*'c | n > 0} is an LR(0)-grammar. In a right sentential form
aAbbb?"c only the reduction taAb?" ¢ is possible as part of a rightmost derivation. The prefibb
uniquely determines this. For the right sentential fai*" c, b is the handle, and the prefi% uniquely
determines this. O

Example 3.4.10The grammar. with the productions
S — aAc A—bbA|b

and the languagé(G2) = L(G,) is anLR(1)-grammar. The critical right sentential forms have the
formab™w. If 1 : w = b, the handle lies imv; if 1 : w = ¢, the lasth in b™ forms the handle. O

Example 3.4.11The grammar+3; with the productions
S — aAc A—bAb|b

and the languagg(Gs) = L(G4) is not anL R(k)-grammar for any: > 0. For, letk be arbitrary, but
fix. Consider the two rightmost derivations

S == ab" Ab"c = ab™bb"c

S = ab"tL A"t le — ab"tlpp"tle
rm m

with n > k. With the names introduced in the definition bR(k)-grammar, we have = ab™, 3 =
b,y = ab" T w = bc,y = b"2c. Herew|, = y|x = b*. a # v implies thatG3 can be nal R(k)-
grammar. O

The following theorem clarifies the relation between therdidin of L R(0)-grammar and the proper-
ties of the canonid. R(0) automaton.

Theorem 3.4.2 A context-free grammat is an LR(0)-grammar if and only if the canonic@lR(0)
automaton foiG has noL R(0)-inadequate states.

Proof: " =" Let G eine LR(0)-grammar, and nehmen wir an, der canonit&}(0) automaton
LRy(G) habe einen einef R(0)-inadequaten state

Fall1: The state hat einerreduce-reduceonflict, d.hp enth"alt zwei verschiedene iteri’§ — 5.], Y — 4.].

Dem statey zugeordnet ist eine nichtleere Menge von reliable prefixesty = /3 ein solches reli-
able prefix. Weil beide items valid for sind, gibt es rightmost derivations

S = v Xw = ~'Buw und
m m

S = vYy = vy mit vd=+'=1~
m m

Das ist aber ein Widerspruch zi(0)-Eigenschaft.

Fall 2: statep hat einershift-reduceconflict, d.h.p enth"altitemg X — 5.] and[Y — d.aq]. Let~y
ein reliable prefix for beide item Weil beide items valid fpsind, gibt es rightmost derivations

S = ' Xw = +'fw und
rm m

S = vYy = véaay mit vd=~'8=r
m m

Ist 3" € Vi, erhalten wir sofort einen Widerspruch. Andernfalls gide@e rightmost derivation

*
a = V1 X V3 = V1VV3
rm rm

3.4 Bottom-up Syntax Analysis 91

Weil y # avyvavsy gilt, ist die LR(0)-Eigenschaft verletzt.

"= Nehmen wir an, der canonicdl R(0) automatonL Ryo(G) habe keineL R(0)-inadequaten
states. Betrachten wir die zwei rightmost derivations:

S = aXw = afw
m rm

S = Y — afy
m m

Zu zeigen ist, dasa = v, X =Y, = = y gelten. Letp der state of the canonicalR(0) automaton
nach Lesen von. Dann enth"alp alle for a3 valid items . Nach Voraussetzung isL R(0)-geeignet.
Wir unterscheiden zwei F"alle:

Fall 1: 8 # . Wegen Lemma 3.4 igt = {[X — (.]}, d.h.[X — (/] ist das einzige valid item for
af. Daraus folgt, dass = v, X = Y andx = y sein muss.

Fall 2: (= e. Nehmen wir an, die zweite rightmost derivation widerspeederL R(0)-Bedingung.
Dann gibt es ein weiteres itefX — 0.Y'n] € p, so dassy = /¢ ist. The letzte Anwendung einer
production in der unteren rightmost derivation ist die tetanwendung einer production in einer ter-
minalen rightmost derivation fdr’. Nach Lemma 3.4 folgt daraus, dass die untere Ableitunglimye
ist durch:

S’ T:jn> o/ 5Y w T:;> o/ Xvw = o/ dvw

wobeiy = vw ist. Damit gilta = /0 = v, Y = X andz = vw = y — im Widerspruch zu unserer
Annahme. O

Let us conclude. We have seen how to constructftR¢0) automaton’ Ry (G) from a given context-
free grammaiGG. This can be done either directly of through the charadteriite-state machine
char(G). From the deterministic finite-state machib&,(G) one can construct a pushdown automata
P,. This pushdown automatd? is deterministic ifL. Ry (G) does not contaii R(0)-inadequate states.
Theorem 3.4.2 states this is exactly the case if the graniimaan L R(0)-grammar. We have thereby
met a method to generate parsersfdt(0)-grammars.

In real life, LR(0)-grammars are rather rare. Often lookahead of lefigth 0 needs to be used
to select between the different choices of a parsing siinatn anLR(0) parser, the actual state de-
termines what the next action is, independently of the mgxtii symbolsLR(k) parsers fok > 0
have states consisting of sets of items. A different kindtednis are used, though, so-callb&(k)-
items. LR(k)-items are context-free items, extended by lookahead wéws. R(k)-item is of the
formi = [A — a.3,z] for a productiond — a3 of G and a wordr € (Vf U V;=F#). The context-
free item[A — «.(] is called thecore, the wordx the lookaheadof the LR(k)-itemsi. The set of
LR(k)-items of grammar? is written asZ¢ ;. The LR(k)-item [A — .3, z] is valid for a reliable
prefix v, if there exists a rightmost derivation

S'# = v Xw# — v afw#

with z = (w#)|. A context-free itemA — «.(] can be understood as &R (0)-item that is extended
by lookahead.
Example 3.4.12Consider again grammaéf,. We have:

1) [E—E+.T,))

[E— E+.T,+] arevalidLR(1)-items for the prefiX E+

2 [E—T.,% is not a validL R(1)-item for any reliable prefix.

To see observation (1), consider the two rightmost deawati

S’ = (E) = (E+T)

m

S/%(E+|d):m>(E+T+|d)

r

Observation (2) follows since the subwakd can occur in no right sentential formO

92 3 Syntactic Analysis

The folllowing theorem gives a characterization of thB(k)-property based on valiil R(k)-items.

Theorem 3.4.3Let G be a context-free grammar. For a reliable prefiet It(+) be the set of.R(k)-
items ofG that are valid fory.

The grammaty is anL R(k)-grammar if and only if for all reliable prefixesand allL R(k)-items
[A — a.,z] € It(y) holds:

1. if there is anothef R(k)-item [X — 4.,y € Tt(y), thenx # y.
2. isthere anothek R(k)-item [X — d.a3,y] € Tt(y), thenx & first,(af) Ok {y}. O

Theorem 3.4.3 suggests to defifigr(k)-adequate and.R(k)-inadequate sets of items also for
k > 0. Let I be a set ofLR(k)-items. I has areduce-reduceonflict, if there areL R(k)-items
[X — a.,z|,[Y — B.,y] € I withz = y. I has ashift-reduceconflict, if there areL R(k)-items
[X — a.aB, 2], [Y — v.,y] € I with

AS {a} Ok firstk(ﬂ) Ok {:L'}

For k = 1 this condition is simplified tg) = a.

The setl is called LR(k)-inadequate, if it has eeduce-reduceor ashift-reduceconflict. Other-
wise, we call itL R(k)-adequate.

The LR(k)-property means that when reading a right sentential foroaralidate for a reduction
together with production to be applied can be uniquely deiteed by the help of the associated reliable
prefixes and thé: next symbols of the input. However, if we were to tabulatecalinbinations of
reliable prefixes with words of length this would be infeasible since, in general, there are iripit
many reliable prefixes. In analogy to our way of dealing witR(0)-grammars one could construct a
canonicalL R(k)-automaton. The canonicalR(k)-automaton. R (G) is a deterministic finite-state
machine. Its states are sets bR(k)-items. For each reliable prefix the deterministic finite-state
machineL R;(G) determines the set df R(k)-items that are valid fory. Theorem 3.4.3 helps us in
our derivation. It says that for ahR(k)-grammar, the set of R(k)-items valid fory together with the
lookahead determines uniquely whether to reduce in thestegt and if so, by which production.

In much the same way as ttig?(0) parser stores states of the canonE&!(0) automaton on its
stack, theL R(k) parser stores states of the canoniEdl(k)-automaton on is stack. The selection of
the right of several possible actions of th& (k) parser is controlled by thactiontable. This table
contains for each combination of state and lookahead orteedbtlowing entries:

shift: read the next input symbol;

reducé X — «): reduce by productioX — «;

error: report error

accept: announce successful end of the parser run

A second table, thgototable, contains the representation of the transition tiancof the canonic
LR(k)-automatornl R, (G). Itis consulted after ahiftaction or areduceaction to determine the new
state on top of the stack. Uporshift, it computes the transition under the read symbol out of tiesh
state. Upon a reduction by — «, it gives the transition undeX out of the state underneath those
stack symbols that belong ta These two tables fot = 1 are shown in Fig. 3.17.

The LR(k) parser for a grammaF needs a program that interprets #@ion andgoto-table, the
driver. Again, we consider the cage= 1. This is, in principle, sufficient because for each language
that has arl. R(k)-grammar and therefore also & (k) parser one can construct &R (1)-grammar
and consequently also dnR(1) parser. Let us assume that the set of states of.tRél) parser were
Q. One such driver program then is:

3.4 Bottom-up Syntax Analysis 93

actiontable gototable
Vru {#} VN UVp
P X
Q parser actio Q| 4 da(q, X)
q for (¢, x)

Fig. 3.17. Schematic representation ation- andgoto-table of anLR(1) parser with set of stateg.

list(state) stack «— [qol;
terminal buffer «— scan();
state q; nonterminal X; string(symbol) «;
while (true) {
q < hd(stack);
switch (action|q, buffer]) {
case shift : stack «— gotolq, buffer] :: stack;
buffer « scan();
break;
case reduce(X — «): output(X — «);
stack «— tl(|al, stack); q < hd(stack);
stack «— gotolq, X] :: stack;

break;
case accept : stack — f::tl(2, stack);
return accept;
case error : output(”...”); goto err;
}

The functionlist(state) tl(int n, list(state) s) returns in its second argument the listvith the
topmostn elements removed. As with the driver program fak(1) parsers, in the case of an error, it
jumps to a labeérr at which the code for error handling is to be found.

We present three approaches to construdt B1) parser for a context-free grammar The most
general method is the canonidaRR(1)-method. For eacli. R(1)-grammarG there exists a canonical
LR(1) parser. The number of states of this parser can be largeeffiner other methods were proposed
that have state sets of the size of th&(0) automaton. Of these we consider tié R(1)- and the
LALR(1)-method.

The described driver program férR (1) parsers works for all three parsing methods; the driver in-
terprets theaction- and agoto-table, but their contents are computed in different waysonsequence,
the actions for some combinations of state and lookaheadmalfferent.

Construction of an LR(1) Parser

The LR(1) parser is based on the canoni€dt(1)-automatorl. R, (G). Its states, therefore, are sets of
LR(1)-items. We construct the canonidaR(1)-automaton much in the same way as we constructed
the canonicallL R(0) automaton. The only difference is thaRR(1)-items are used instead &fR(0)-
items. This means that the lookahead symbols need to be d¢echpinen the closure of a setof

94 3 Syntactic Analysis

LR(1)-items undee-transitions is formed. This set is the least solution offtil®wing equation
I=qU{[A— 4,y |3X - adB e P: [X — a.Af,x] € I,y cfirsty(8) ®1 {z}}

It is computed by the following function

set(item1) closure(set(item1) q) {
set(item1) result «— g;
list{item) W « list_of(q);
nonterminal X; string(symbol) o, B; terminal x,y;
while (W #) {
itemy i — hd(W); W «— tl(W);
switch (i) {
case [— _ X0, 1]:
forall (a: (X — a) € P)
forall (y € firsty(8) @1 {x})
if ([X — .«,y] & result) {
result — result U {[X — ., y]};
W —[X — .a,y] = W;

default : break;

}
}

return result;

}

whereV is the set of all symbold/ = V; U V. The initial stateyy of LR, (G) is

qo = closure({[S" — .S, #]})

We need a functionextState() that computes the successor state to a given eétl R, -items and a
symbolX € V = Vy U V. The corresponding function for the constructionZd?,(G) needs to be
extended by the compute the lookahead symbols:

set(itemy) nextState(set(item1) q, symbol X) {
set{itemy) ¢’ — 0;
nonterminal A; string(symbol) «,; terminal x;
forall (A, , 3,2 : ([A — a.Xf,2] € q))
¢ — ¢ U{[A— aX.p x]};
return closure(q’);

}

The set of states and the transition relation of the canbii&{1)-automaton is computed in analogy
to the canonical R(0)-automaton. The generator starts with the initial stateaandmpty set of tran-
sitions and adds successors states until all successes atatalready contained in the set of computed
states. The transition function of the canoni€dt(1)-automaton gives thgoto-table of theLR(1)
parser.

Let us turn to the construction of theetiontable of theL R(1) parser. Nareduce-reduceonflict
exists in a statg of the canonicall R(1)-automaton with completé R(1)-items[X — a.,z],[Y —
B.,y] if @ # y. If the LR(1) parser is in state it will decide to reduce with the production whose

3.4 Bottom-up Syntax Analysis 95

lookahead symbol is the next input symbol. If stateontains at the same time a complét(1)-item
[X — a.,z] and anLR(1)-item [Y — [.av,y], it still has noshift-reduceconflict if « # x. In state
q the generated parser will reduce if the next next input sylrishe and shift if it isa. Therefore, the
actiontable can be computed by the following iteration:

forall (state q) {
forall (terminal x) actionl|q,x] < error;
forall ([X — a.B,z] € q)
if (B=¢)
if (X=8ANa=SAx=4%#) action|[q, #] — accept;
else action|q, z] — reduce(X — a);
else if (8 =af’) action|q,a] « shift;
}

Example 3.4.13We consider some states of the canonic&l 1)-automaton for the context-free gram-
mar Gy. The numbering of states is the same as in Fig. 3.15. To makeefhresentation of sefs
of LR(1)-items more readable all lookahead symbold.iR(1)-items from.S with the same kernel
[A — «.fd] are collected in one lookahead set

L={z|[A— apacq)
We represent subsefd — a.03,z| | © € L} as[A — «.3, L] and obtain

Sy, = closure({[S — .E,{#}]}) S¢ = nextState(S], +)
={[5— .E {#}] ={[E— E+.T {#+}],
[E— .E+ T {# +}], [T — T« F.{#,+,+}],
[E— T, {#,+}, [T — .F {#. +,+}],
[T — T« F {4, +, }], [F = .(E){#,+,+}],
[T — .F,{#,+, *}], [F— d, {#,+,*}] }
[F— .(E), {#, +,*}],
[F— Id, {#,+,*}] } Sy = nextState(S§,T))
={[E—E+T {#+}],
S = nextState(S),) [T —T.x F,{#,+,%}] }
={[S— E. {#},
[E— E.+T{#,+}] }
SL = nextState(S7,T)

={[E—=T.{# +}],
[T — T. % F,{#,+,+}] }

After the extension by lookahead symbols, the st&tesS; and Sy, which wereL R(0) inadequate,
have no longer conflicts. In staf§ the next input symbok indicates to shift, the next input symbol
indicates to reduce. In stat§ lookahead symbol indicates to shift# and+ to reduce; similarly

in stateSj.

The table 3.6 shows the rows of thetion-table of the canonicdl R(1) parser for the gramma¥,

which belong to the state%), 57, S5, S§ andSy. O

SLR(1)-and LALR(1) parser

The set of states adf R(1) parsers can become quite large. Therefore, aftBranalysis methods are
employed that are not as powerful as canonical LR parserbave fewer states. Two su¢hR analysis

96 3 Syntactic Analysis

The used numbering of the productions:

d () = -+ #

S, | s s 1:S—F
Sq s acc 2:E—-E+T
S5 s r(3) r(3) 3:E—T

4: T —-Tx*xF
St | s s 5: 7T —F

6: F— (E)
S5 s r(2) r2) 7:F—Id

Table 3.6. Some rows of thactiorrtable of the canonical R(1) parser forGo. s stands foishift, () for reduce
by productioni, accfor accept All empty entries represesetror.

methods are th6 LR(1)- (simpleLR-) and LALR(1)- (lookaheadL R-)methods. ISSLR(1) parser
is a specialL ALR(1) parser, and each grammar that hadat?. R(1) parser is ar. R(1)-grammar.

The starting point of the construction 8L R(1)- and LALR(1) parsers is the canonicalR(0)
automatonL R (G). The setQ of states and thgoto-table for these parsers are the set of states and
the goto-table of the correspondingR(0) parser. Lookahead is used to resolve conflicts in the states
in Q. Letq € Q be a state of the canonicAR(0) automaton anflX — «.] an item ing. We denote
by (g, [X — «a.f]) the lookahead set that is added to the ifém— «.5] in ¢. The SLR(1)-method
is different from theL AL R(1)-method in the definition of the function

AN:Q XTI — QVTU{#}

Relative to such a functioi, the state; of LRy(G) has areduce-reduceonflict, if it has different
complete item$X — «.], [Y — (.] € g with

Mg, [X =)N (g, [Y — B]) #0

Relative to\ , ¢ has ashift-reduceconflict if it has items[X — «.af],[Y — 7.] € g witha €
Mg, [Y = .]).

If no state of the canonif R(0) automaton has a conflict, the lookahead 8éis[X — «.]) suffice
to construct amctiontable zu.

In SLR(1) parsers, the lookahead sets for items are independent sfates in which they occur;
the lookahead only depends on the left side of the produatithre item:

As(q, [X — a.f)) = {a € Vp U{#} | S'# == vXaw} = follow; (X)

for alle states; mit [X — «.] € ¢. A stateq of the canonical R(0) automaton is calle®LR(1)-
inadequatef it contains conflicts with respect to the function. G is anSLR(1)-grammarif there
are noSLR(1)-inadequate states.

Example 3.4.14We consider again grammaéf, of Example 3.4.1. Its canonicdlR(0) automaton
LRy(Gp) has the inadequate statés S2 and.Sy. We extend the complete items in the states by the
follow, -sets of their left sides to represent the functignin a readable way. Sindellow; (S) = {#}
andfollow, (E) = {#,+,)} we obtain:

ST ={1[S — E., {#}], conflict eliminated,
[E—E.+T]} da + & {#}

S ={[E—T.,{#+,)}, conflict eliminated,
[T—T.xF]} da =& {#,+,)}

S§={[E—E+T,{#,+,)}], conflict eliminated,

[T —T.%«F]} da ¢ {#, +,)}

3.4 Bottom-up Syntax Analysis 97

S0,Gp ian SLR(1)-grammar and it has asiL R(1) parser. O

The setfollow; (X) collects all symbols that can follow the nontermigalin a sentential form of the
grammar. Only théollow; -sets are used to resolve conflicts in the construction &f&aR(1) parser. In
many cases this is not sufficient. More conflicts can be resbifithe state is taken into consideration
in which the complete iterfiX — «.] occurs. Thanost precisédookahead set that considers the state is
defined by:

A (g, [X — a.f]) ={a € Vr U{#}|S'# %’yXaw/\ AL (qo,ye) = q}

Here,qo is the initial state, and\; is the transition function of the canonid?(0) automatorl Ry (G).
In A\z(¢q,[X — «.]) only terminal symbols are contained that can foll&in a right sentential form
[Xaw such thatBa drives the canonical R(0) automaton into the statg We call stateg of the
canonicalL R(0) automaton. AL R(1)-inadequatdf it contains conflicts with respect to the function
Ar. The grammagG is an LALR(1)-grammar if the canonical R(0) automaton has né ALR(1)-
inadequate states.

There always exists ahALR(1) parser to anLALR(1)-grammar. The definition of the function
Az however is not constructive since sets of right sententiehé appear in it that are in general
infinite. The sets\1(¢,[A — «.]) can be characterized as the least solution of the followyistesn
of equations:

AL(qo, [S" — .S]) = {#}
(g, [A = aX.(]) = U [A — aXf]) | Ag(p,X)=q}, X e (VrUVy)
AL(g, [A — o) =U{firsti(8) ©1 Arlq, [X — 7. AB]) | [X —~v.AB] € ¢'}

The system of equations describes how sets of successopksy/aflitems in states originate. The first
equation says that onk can follow the start symbdi’. The second class of equations describes that
the follow symbols of an itemid — o X.3] in a state; result from the follow symbols after the dot in
an item[A — «.X 3] in stategp from which one can reachby readingX . The third class of equations
formalizes that the follow symbols of an ited — .| in a stateg result from the follow symbols of
occurrence®f A in items ing after the dot, that is, from sefisst; (5) ©1 AL (¢, [X — 7.A4[]) foritems

[X — ~.Af] ing.

The system of equations for the sais(q, [A — «a./3]) over the finite subset lattic®™V{#} can be
solved by the iterative method for the computation of leait®ons. Considering which nonterminal
may produces allows us to replace the occurrencesletoncatenation by unions. We so obtain an
equivalent pure union problem that can be solved by the effichethod of Section 3.2.7.

LALR(1) parsers can be constructed in the following, not very efiicigay: One constructs a
canonicalLR(1) parser. If its states have no conflicts such statesdq are merged to a new state
p’ where the cores of the items jnare the same as the cores in the itemg,athat is, where the
difference of the two sets of items consists only in the Idmad sets. The lookahead sets in the new
statep’ are obtained as the union of the lookahead sets of items métkdme core. The grammar is an
LALR(1)-grammar if the new states have no conflicts.

A further possibility consists in the modification of Algthhin LR(1)-GEN The conditional state-
ment

if ¢’ notin Qthen Q :=QU{¢}fi;
is replaced by

if exist.¢” in @ mit kerngleicli¢’, ¢”") then verschmelz&), ¢', ¢"") fi;
where

function samecorép, p’ : set of item):bool;
if set of cores op = set of cores of’
then return (true)
else return (false)

98 3 Syntactic Analysis
fi;

proc mergé(: set of set of itemp, p’ : set of item);
Q:=QU{[X —a.f,L1 ULy |[X — a.f,L1] € pund[X — «.0, Lo] € p'}.

Example 3.4.15The following grammar taken from [ASU86] describes a siffigadi version of the C
assignment statement:

S — S

S —- L=R|R
L — *R|Id
R — L

This grammar is not a8 LR(1)-grammar, but t is &AL R(1)-grammar. The states of the canonical
LR(0) automaton are given by:

So = {8 — .S, So={[S—L. =R, S¢={[S—L=.R]
[S— .L=R), [R— L]} R — L),
[S — .R], [L —.*R],
[L—.*R], S ={I5—R]} (L — .d] }
(L — .Id], Sy ={[L— *.R],
R—.I] } {{R_)L],] St it
e [L — .*R], Ss={[R—L]}
Si=tls=51 (L — 1d] }

So={[S—>L=R]}
Ss={[L—1d]}

StateS, is the only LR(0)-inadequate state. We haf@low; (R) = {#,=}. This lookahead set for
the item[R — L.] is not sufficient to resolve thehift-reduceconflict in Sy since the next input symbol
= is in the lookahead set. Therefore, the grammar is nétaR(1)-grammar.

The grammar however is BALR(1)-grammar. The transition diagram of ifsALR(1) parser
is shown in Fig. 3.18. To increase readability, the lookahsetsA; (¢,[A — «.0]) were directly
associated with the itefd — «.(] of stateq. In stateSs, the item[R — L.] has now the lookahead
set{#}. The conflictis resolved since this set does not contain &x¢input symbol=. O

3.4.4 Fehlerbehandlung inL R parsern

LR parser besitzen ebenso wid, parser die Eigenschaft of the fortsetzungsf'ahigen Peafias
bedeutet, dass jedes durch eireR parser fehlerfrei analysierte prefix der input zu einem édkten
inputwort, einem Satz der Sprache, fortgesetzt werden.Kaiift ein LR parser in einer Konfiguration
auf ein input symbob mit action|[q, a] = error , ist dies die fr'uhestm"ogliche Situation, in der ein
Fehler entdeckt werden kann. Diese Konfiguration nennefatiterkonfiguratiorundq denFehlerzu-
standdieser Konfiguration. Auch fok R parser gibt es ein Spektrum von Fehlerbehandlungsverfahre

o \orw"artsfehlerbehandlung. Modifikationen werden in destlichen input, nicht aber auf dem
Parserkeller vorgenommen.
e R"uckw"artsfehlerbehandlung. Modifikationen werden aachdem Parserkeller vorgenommen.

Nehmen wir ang sei der aktuelle state urnddas next Symbol in der input. Als mdgliche Korrekturen
bieten sich die Aktionen ein verallgemeinerssft(3a) fur ein item[A — «.fay] ausq, einreduce
fur unvollstandige items ausoderskipan:

e The Korrekturshift(5a) nimmt an, dass das Teilwort z81ausgefallen ist. Es kellert deshalb die
Zustande, die der item-pushdown automaton bei Lesen deb&faige 5 von ¢ aus durchlauft.
AnschlieRend wird das Symbalgelesen and der entsprechestiéft-Ubergang des Parsers aus-
geflhrt.

