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1

The Structure of Compilers

Our series of books treats the compilation of higher prognarng languages into the machine lan-
guages of virtual or real computers. Such compilers aree]Jazgmplex software systems. Realizing
large and complex software systems is a difficult task. Wapecial about compilers such that they
can be even implemented as a project accompanying a coropilese? A decomposition of the task
into subtasks with clearly defined functionalities and olederfaces between them makes this, in fact,
possible. This is true about compilers; there is a more & $¢gndard conceptual compiler structure
composed of components solving a well-defined subtask ofdingpilation task. The interfaces be-
tween the components are representations of the inputgrogr

The compiler structure described in the following i€@nceptualstructure. i.e. it identifies the
subtasks of the translation ofsaurcelanguage into @argetlanguage and defines interfaces between
the components realizing the subtasks. The concrete ectinie of the compiler is then derived from
this conceptual structure. Several components might bébead if the realized subtasks allow this.
But a component may also be split into several componertig ifé¢alized subtask is very complex.

A first attempt to structure a compiler decomposes it inte¢gfatomponents executing three consec-
utive phases:

1. Theanalysis phaserealized by thd=rontend It determines the syntactic structure of the source
program and checks whether the static semantic constraiatsatisfied. The latter contain the
type constraints in languages with static type systems.

2. Theoptimizationandtransformationphase, performed by what is often called WMieldleend The
syntactically analysed and semantically checks programarsformed bysemantics-preserving
transformations. These transformations mostly aim at @avipg the efficiency of the program by
reducing the execution time, the memory consumption, océimsumed energy. These transforma-
tions are independent of the target architecture and malsthyindependent of the source language.

3. Thecode generation and the machine-dependent optimizat@se, performed by thgackend
The program is being translated into an equivalent progmarthé target language. Machine-
dependent optimizations might be performed, which expleduliarities of the target architecture.

This coarse compiler structure splits it into a first phad@ctvdepends on the source language, a third
phase, which depends only on the target architecture, agcbad phase, which is mostly independent
of both. This structure helps to adapt compiler componentetv source languages and to new target
architectures.

The following sections present these phases in more dd&ilbompose them further, and show
them working on a small running example. This book descrthesanalysis phase of the compiler.
The transformation phase is presented in much detail in theme Analysis and Transformation
The volumeCode Generation and Machine-oriented Optimizatimvers code generation for a target
machine.



2 1 The Structure of Compilers

1.1 Subtasks of compilation

Fig. 1.1 shows a conceptual compiler structure. Compitaalecomposed into a sequence of phases.
The analysis phase is further split into subtasks as thismvelis concerned with the analysis phase.
Each component realizing such a subtask receives a repaearof the program as input and delivers
another representation as output. The format of the ougmresentation may be different, e.g. when
translating a symbol sequence into a tree, or it may be the shnthe latter case, the representation
will in general be augmented with newly computed informatibhe subtasks are represented by boxes
labeled with the name of the subtask and maybe with the nartie@hodule realizing this subtask.

We now walk through the sequence of subtasks step by ste@atbaze their job, and describe the
change in program representation. As a running example waaer the following program fragment:

int a, b;
a = 42;
b=axa—T,

where’ =’ denotes the assignment operator.

Quellprogramm als Zeichenfolge

!

lexikalische Analyse 1

Scanner
Symbolfolge

Optimierung

Sieben
Sieber
dekorierte Symbolfolge

syntaktische Analyse

mw<rmr>»Z2>»

Parser
Syntaxbaum

Codeerzeugung

moumI-—a4zZ2<Wm

semantische Analyse l

dekorierter Syntaxbaum

Zielprogramm

Fig. 1.1. Structure of a compiler together with the program repregents during the analysis phase.

1.2 Lexical Analysis

The component performing lexical analysis of source pnogres often called thecanner This com-
ponen reads the source program represented a sequenceaaftereamostly from a file. It decomposes
this sequence of characters into a sequence of lexicalafititi® programming language. These lexical
units are calledymbolsTypial lexical units are keywords such #s else, while or switch and spe-
cial charactes and character combinations such,as=,! =, <=,>=,<,>,(,),[,],{, } or comma
and semicolon. These need to be recognized and convertecbirfesponding internal representations.
The same holds for reserved identifiers such as names of tyg&sint, float, double, char, bool

or string, etc. Further symbols are identifier and constants. Exagripleidentifiers arevalue4?2, abc,
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Myclass, x, while the character sequenc 3.14159 and’’HalloWorld!” represent constants. Some-
thing special to note is that there are, in principle, aabity many such symbols. However, they can be
categorized into finitely mangiassesA symbol class consists of symbols that are equivalentraasfa
the syntactic structure of programs is concerned. Idergifiee an example of such a class. Within this
class, there may be subclasses such as type constructocainLQor variables in ROLOG, which are
written in capital letters. In the class of constains,constants can be distinguished from floating-point
constants andtring-constants.

The symbols we have considered so far bear semantic intatijpres and need, therefore, be consid-
ered in code generation. However, there are symbols wittemgantics. Two symbols need a separator
between them if their concatenation would also form a synfbath a separator can be a blank, a new-
line, or an indentation or a sequence of such characterh. Kucalled white space can also be inserted
into a program to make visible the structure of the program.

Another type of symbols, without meaning for the compilert belpful for the human reader, are
comments and can be used by software development tools. ilasitype of symbols areompiler
directives(pragmasg. Such directives may tell the compiler to include partiedibraries or influence
the memory management for the program to be compiled.

The sequence of symbols for the example program might loééllasvs:

Int(”l‘nt”) Sep(// //) Id(//a//> Com(//,//> Sep(// //) Id(//b//) Sem(//;//> Sep(//\n//>
Id(”a”) Bec("=") Intconst("42") Sem(";"" ) Sep("\n")
Id(/lbl/) Bec(/I:I/) Id(l/all) Mop(ll*/l) Id(/lall) Aop(ll_ll) |ntCOnSt(”7H) Sem(ll;ll) Sep(ll\nll)

To increase readability, the sequences was brolen ints #ineording to the original program structure.
Each symbol is represented with its symbol class and theérgulpsepresenting it in the program. More
information may be added such as the position of the stritiggrnput.

1.3 The Screener

The scanner delivers a sequence of symbols to the scredresre Bre substrings of the program text
labeled with their symbol classes. It is the task of the sweeéo further process this sequence. Some
symbols it will eliminate since they have served their prggas separators. Others it will transform into
a different representation. More precisely, it will perfothe following actions, specific for different
symbol classes:

Reserved symbolsthese are typically identifiers, but have a special meamiriigeé programming lan-
guage. e.ghegin, end, var, int etc.

Separators and commentSequences of blanks and newlines serve as separators hetyrabols.
They are of not needed for further processing of the prognagdncan therefore be removed.. An
exception to this rule are some functional languages, eagKHLL, where indentation is used to
express program nesting. Comments will also not be neetkddiad can be removed.

Pragmas: Compiler directives (pragmas) are not part of the prograneyTwill separately passed on
to the copmpiler.

Other types of symbols are typically preserved, but theitui@ representation may be converted into
some more efficient internal representation.

Constants: The sequence of digits as representation of number coesgacdnverted to a binary rep-
resentationString-constants are stored into an allocated object.Awvn Jmplementations, these
objects are stored in a dedicated data structureSthieg Pool The String Pool is available to the
program at run-time.

Identifier: Compilers usually do not work with identifiers representsdstting objects. This repre-
sentation would be too inefficient. Rather, identifiers avdexl as unique numbers. The compiler
needs to be able to access the external representationniifiels, though. For this purpose, the
identifiers are kept in a data structure, which can be effilji@udressed by their codes.
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The screener will produce the following sequence of anedtaymbols for our example program:

Int() 1d(1) Com() Id(2) Sem()
Id(1) Bec() Intconst(42) Sem()
Id(2) Bec() 1d(1) Mop(Mul) 1d(1) Aop(Sub) Intconst(7) Sem()

All separators are removed from the symbol sequence. Sexabwdlues were computed for some of
the substrings. The identifieisandb were coded by the numbers 1 and 2, resp. The sequences of digit
for theint constants were replaced by their binary values. The inteepaesentations of the symbols
Mop andAop are elements of an appropriate enumeration type.

Scanner and screener are usually combined into one mocdhileh v8 also calle@gcanner Concep-
tually, however, they should be kept separate. The tasktlieascanner, in the restricted meaning of
the word, performs can be realized by a finite-state machine screener, however, can be realized by
arbitrary pieces of code.

stat

(it [19] [Gom] [14] [Sem | [ oee itorst] [ Sem] [1d] [Beq [14] [ Wop ] [ [ Aop ] o] Sen]

Fig. 1.2. Syntactic analysis of the example program.

1.4 Syntactic Analysis

The lexical and the syntactic analysis together recoghigeyntactic structure of the source program.
Lexical analysis realized the part of this task that can laéized by a finite-state machine. Syntactic
analysis recognizes the hierachical structure of the joga task a finite-state machine can not do in
general. The syntactical structure of the program consistequential and hierarchical composition of
language constructs. The hierarchical composition cpaeds to thenestingof language constructs.
Programs in an object-oriented programming language ke &onsist of class declarations, which
may be combined into packages. The declaration of a classcowatain declarations of attributes,
constructors, and methods. A method consists of a methatdreha method body. The latter contains
the implementation of the method. Some language constm&ysbe nested arbitrarily deep. This is
the case for arithmetic expressions, where an unlimitedaaunof operators can be used to construct an
expression of arbitrary size and depth. Finite-state nmashire incapable of recognizing such nesting
of constructs, and regular expressions are not expressegh to describe it. We need to resort to
more powerful specification mechanisms and recognizers.

Pushdown automatare used as recognizers. The pushdown automaton used gmizethe syn-
tactic structure is callegarser. This component should not only recognize the syntacticctire of
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correct programs. It should also be able to properly dedl gyntactically incorrect programs. After
all, most programs submitted to a program contain mistakgsical syntax errors are spelling errors
in keyword, missing parentheses or separators. The pdrseldsdetect these kind of errors, diagnose
them, and maybe even try to correct them.

The syntactic structure of programs can be describexbbyext-free grammargrom the theory of
formal languages and automata we know that pushdown autcamaequivalent to context-free gram-
mars. Parsers are, therefore, deterministic pushdowmetéo There exist many different methods for
syntactic analysis. The two major ones are described in €h&p

The output of the parser may have several different equitédemats. In our conceptual compiler
structure and in Fig. 1.2 (C), we use as outpaitse trees

1.5 Semantic Analysis

The job of semantic analysis is to determine properties &edlcconditions that are relevant for the
well-formedness of programs according to the rules of tlog@mming language, but that go beyond
what can be described by context-free grammars. Thesetamalcan be completely checked on the
basis of the program text are callsthtic semantiproperties. This phase is, therefore, called seman-
tic analysis. Thalynamicsemantics, in constrast, describes the behavior of pragvelnen they are
executed. The atrtributestaticanddynamicare associated with theompile timeand therun time of
programs, respectively. We list some static semantic ptigseof programs:

e type correctness in strongly typed programming language<), BRscAL, JAVA or OCAML. Nec-
essary for type correctness is that all identifiers are ded|aither explicitily or implicitily and
possible the absence of multiple declarations of the saerifdbr.

e the existence of aonsistent type associatiavith all expressions in languages with type polymor-
phism.

Example 1.5.1 For the program of Example 1.2, semantic analysis will aliee declarations of the
declsubtree in a map
env = {Id(1) — Int,1d(2) — Int}

. This map associates each identifier with its type. Using ttép, semantic analysis can check in the
statsubtrees whether variables and expressions are usedpe-@tyrect way. For the first assignment,
a = 42:, it will check whether the left side of the assignment is aialale identifier, and whether
the type of the left side is compatible with the type on théitigide. In the second assignement,
b = axa — 7;, the type of the right side is less obvious. It needs to berated from the types of
the variablex and the constarit One should not forget that the arithmetic operatoraszloadedn
most programming languges. This means that they standdatéhignated operations of several types,
for instance orint- as well as oriloat-operands, possibly even for different precision. The gipecker
has to resolve overloading. In our example, it determinasttie multiplication is amt-multiplication
and the subtraction ant-subtraction, both returning values of tyipé. The result type of the right side
of the assignment, therefore,iig. O

1.6 Machine-Independent Optimization

Static analyses of the source program might detect potentiatime errors or possibilities for pro-
gram transformation that will increase the efficiency of pnegram while preserving the semantics of
the program. Adata-flow analysi®r abstract interpretatiorcan detect, among others, the following
properties of a source program:

e There exists a program path on which a variable would be u#ddwut being initialized.
e There exist program parts that cannot be reached or fursdti@t are never called. These superflu-
ous parts don’t need to be compiled.
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e A program variable: at a statement in an imperative program has always the sdoes #an this
case, variable can be repaced by the valuén this statement.
This analysis would recognize that at each execution of geersd assignment, = a *x a — T7;,
variablea has the valud2. Replacing both occurrencesoby 42 leads to the expressida«42—7,
whose value can be evaluated at compile time. This analgsisransformation is calledonstant
propagationwith constant folding.

A major empasis of this phase is on evaluating subexpresgibnse value can be determined at com-
pile time. Besides this, the following optimizations candegformed by the compiler:

e Loop invariantcomputations can be moved out of loops. A computatiolodp invariantif it
only depends on variables that do not change their valuenguhie execution of the loop. Such
a computation is executed only once instaed of in each iberathen it has been moved out of a
loop.

e A similar transformation can be applied in the compilatiéfumctional programs to reach tlialy
lazy-property. Expressions that only contain variables bourtdide of the function can be moved
out of the body of the function and passed to the function Iis @dth an additional parameter.

These kinds of optimizations are performed by many comgil€hey make up themiddle endof the
compiler. The volum&€ompiler Design - Analysis and Transformatigrdedicated to this subject area.

1.7 Memory Allocation

The allocation of memory and the assignment of addresses #tasynthesis phasef compilation.
This phase strongly depends on properties of the targeitectire, such as word length, the address
length, the directly addressable units of the machine, la@@xistence or non-existence of instructions
for efficient direct access ton parts of directly addressabits. These machine parameters determine
the allocation of memory units to basic types and the pd#gito pack values of “small’types such as
Booleans and characters, into bigger memory units. Thisengisaving optimization needs to consider
the constraints for directly addressable units. For ircgagint values can only be directly accessed or
operated upon on many machines when they are allocated dtowoders. These constraints are called
alignmentrules.

Example 1.7.1 (see Fig. 1.3\We assume to have a machine with addressing of full words,isha
consecutive words have addresses that differ by 1. The dengliocatesnt-variables to full words.
Increasing addresses in the order in which the variabledenkared are assigned starting with address
0. Variableais assigned addressi9address 1. O

1.8 Generation of the Target Program

The code generator takes the intermediate representdttbe program and generates the target pro-
gram. A systematic way to translate several types of progriaug languages to adequate virtual ma-
chines is presented in the volun@mpiler Design — Virtual Machine€ode generation, as described
there, works recursively over the structure of the prograrould, therefore, start directly after syn-
tactic and semantic analysis and work on the decorated parse

The code generator uses the addresses assigned to vadahllescribed in the preceding step.
However, the access to values is more efficient if the valvestared in the registers of the machine.
Target machines have a limited number of such registers.t&keof the code generator is to make
good use of this restricted resource. The task to assigsteggito variables and intermediate values is
calledregister allocation

Example 1.8.1 Let us assume that a virtual or concrete target machine wave registers;, ro, ..., rn
for a (mostly small)Vand that it would have, among others, the instructions
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Fig. 1.3.Analyse eines Programmausschnitts, (D) semantische s@a(lf) Adre"szuordnung.

PROGRAM
DECLIST STATLIST STAT
_— \
STATLIST ASSIGN
| |
STAT E
| —
ASSIGN E
\ ‘
DECL |1 E T [4]
\ | —
IDLIST T T T
_—— | | |
(©) IDLIST TYP F F F F
| | | | | |
var id(1) com id(2) col int sem id(1) bec int("2") sem id(2) bec id(1) mul id(1) add int("1

(D) (id(2),(var,int)) (var,int) (var,int) E int int

(id(2),(var,int))

(E) (id(1),(var,int,0)) (var,int,0) (var,int,1)

(id(2),(var,int,0))

| instruction | meaning |
load 7i,q r; — M|ql;
store q,r; M(q] < ri;
loadi 7i,q Ti— q;

subi i, T, | Ti— 15— g

mul 7,75, TR | T Ty R TR

whereq stands for an arbitraript-constant, and/|. . .] for a memory access. Let us further assume that
variablesa andb were assigned the global addressesd2. One potential translation of the example
program, which would store the values foandb in the corresponding memeory cells, could look like
follows:

loadi  r1,42
store 1,7
mul 72,71, T1
subi r3, 12,7
store  2,r3

Registers1, ro andrs serve for to store intermediate values during the evaloaifaight sides. Reg-
istersr, andrs hold the values of variablesandb, resp. Closer inspection reveals that the compiler
could save registers. For instance, regisiecan be reused for registes since the value im is no
longer needed after the multiplication. Evan the resulbefibstructiorsubi may be stored in the same
register. We, thus, obtain the improved instructions seqee



8 1 The Structure of Compilers

loadi rq,42
store 1, 1
mul r1,71,71
subi  r1,71,7
store 2,7

O

The code generator needs to observe limitations enforceldebogumber of registers. It may not store
in registers more intermediate results concurrently themumber of registers allows. These and sim-
ilar constraints are to be found in realistic target aratitees. Furthermore, they typically offer many
instruction that make special cases very efficient. Thisendlke generation of efficient code very diffi-
cult. The necessary techniques are presented in the volbomepiler Design — Code Generation and
Machine-Level Optimizatian

1.9 Specification and Generation of Compiler Components

The theory of formal languages and automata tells us thae somalysis subtasks of compilation are
word problems of certain languages and that certain typetofaata are acceptors for these languages
and, thus, solve these word problems. One also knows thee tigomata can be automatically gener-
ated from grammars that are used as specification mechanisms

All the tasks that are to solved during the syntactic analgan be elegantly specified by different
types of grammars. Symbols, the lexical units of the langsagan be described by regular expressions.

A non-deterministic finite-state machine recognizing treguage described by a regular expression
can be automatically derived from the regular expressitiis on-deterministic finite-state machine
can be automatically converted into a deterministic fistite machine.

A similar correspondence is known between context-freengrars and pushdown automata. A
non-deterministic pushdown automaton recognizing thguage of a context-free grammar can be au-
tomatically constructed from the context-free grammar.pgractical applications such as compilation,
one prefers deterministic pushdown automata. Howeveikeum the case of finite-state machines,
non-deterministic pushdown automata are more powerfual degerministic pushdown automata. Most
designers of programming languages have succeeded to #kay the class of deterministically an-
alyzable context-free languages, so that syntax analy$ied languages is relatively simple and ef-
ficient. The example of C++, however, shows that a badly desigyntax requires nondeterministic
parsers and considerably more effort, both in building a@aand in actually parsing programs in the
language.

The compiler components for lexical and syntactic analytkigs, need not be programmed by
hand, but can be automatically generated from approprnegeifications. These two example suggest
to look for more compiler subtasks that could be solved bypmatically generated components. As
another example for this approach, we meggtibute grammarsn this volume. These are an extension
of context-free grammars in which computations on parsestoan be specified. These computations
typically check the conformance of the program to statimaetics conditions like typing rules. Table
1.1 lists compiler subtasks treated in this volume that carfiobmally specified in such a way that
implementations of the corresponding components can lmradically generated. The specification
and the implementation mechanisms are listed with the skbta

Program invariants as they are needed for the semantisspieg application of optimizing pro-
gram transformations can be computed using generic appeed@msed on the theory albstract inter-
pretation This is the subject of the volun@ompiler Design — Analysis and Transformation

There also exist methods to automatically produce compsrathe compiler backend. For in-
stance, instruction scheduling can be solved by line@er Linear Programming All the subtasks of
code generation are treated in depth in the vol@uompiler Design — Code Generation and Machine-
Level Optimization
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compilation subtasl{ specification mechanisn|1 implementation mechanisrﬁ

lexical analysis regular expressions deterministic
finite-state machines
syntactic analysis | context-free grammars | deterministic
pushdown automata
semantic analysis | attribute grammars attribute evaluators

Table 1.1. Compiler subtasks, specification mechanisms, and come&mpimplementation mechanisms

1.10 Literature

How to structure compilers was well understood rather edite following articles may be taken as
witnesses [MD74], [McK74], and [GW75].
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Lexical Analysis

We start this chapter with a description of the task of leidrealysis and then present regular expres-
sions as specification mechanism for this task. Regulaesspns can be automatically converted into
non-deterministic finite state machines, which implementdal analysis. Non-deterministic finite-
state machines can be made deterministic, which is prefésréemplementing lexical analyzers, often
calledscannersAnother transformation on the resulting deterministidéirstate machines attempts to
reduce the size of the machines. These three steps togediterup an automatic process generating
lexical analyzers from specifications. Another module virggkn close cooperation with such a finite-
state machine is th&creener |t filters out keywords, comments etc. and may do some bagkkeg.

2.1 The Task of Lexical Analysis

Let us assume that the source program is stored in a file. istsrof a sequence of characters. Lexical
analysis, i.e., the scanner, reads this sequence fronoleigtit and decomposes it into a sequence
of lexical units, calledsymbols Scanner, screnner, and parser may work in an integratediméyis
case, the parser calls the combination scanner-screeonbtam the next symbol. The scanner starts
the analysis with the character that follows the end of teeflaund symbol. It searches for the longest
prefix of the remaining input that is a symbol of the langudieasses a representation of this symbol
on to the screener, which checks whether this symbol isaeldor the parser. If not it is ignored, and
the screener reactivates the scanner. Otherwise, it pagsessibly transformed representation of the
symbol on to the parser.

The scanner must, in general, be able to recognize infinitelgry or at least very many different
symbols. The set of symbols is, therefore, divided into digitmany classes. Orgymbol claswill
consist of symbols that have a similar syntactic role. Wérdisiish:

e The alphabet is the set of characters that may occur in proggets. We use the letter to denote
alphabets.

e A symbolis a word over the alphabét. Examples areyz12, 125, class, “abc”.

e A symbol classs a set of symbols. Examples are the set of identifiers, thef set-constants, and
the set of character strings. We denote thesklpintconst andString, respectively.

e Therepresentation of a symbaebmprises all of the mentioned informations about a symite t
may be relevant for later phases of compilation. The scamight represent the wordyz12
as pair(ld, “xyz12"), consisting of the name of the class and the found symbol,pasd this
representation on to the screener. The screener couldesplaz 12 by the internal representation
of an identifier, for example, a unique number, and then gas®h to the parser.
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2.2 Regular Expressions and Finite-State Machines

2.2.1 Words and Languages

We introduce some basic terminology. We usé&o denote somalphabet that is a finite, non-empty
set of characters. &vord = over X’ of lengthn is a sequence of characters front'. Theempty word
¢ is the empty sequence of characters, i.e. the sequencegtfil@enWe consider individual characters
from X' as words of length 1.

3™ denotes the set of words of lengttfor n > 0. In particular,X? = {¢} and X! = X. The set
of all words is denoted a&*. Correspondingly i " the set ohon-emptywords, i.e.

= U xyr  and xt= U yn

n >0 n>1
Several words can be concatenated to a new wo@othcatenatiorof the wordsz andy puts the se-
guence of characters gfafter the sequence of characterscof.e.

T.Y=T1..-TmY1---Yn,

fr=21...0my=y1...y, fOraz;,y; € .

Concatenation of: andy produces a word of length + m if x andy have lengthn andm,
respectively. Concatenation is a binary operation on the’$eln contrast to the addition on numbers,
concatenation of words is nobmmutativeThis means that the word. y is , in general, different from
the wordy . x. Like the addition on numbers, concatenation of wordsssociativei.e.

z.(y.2)=(x.y). 2z forall z,y,z € 2*
The empty word is theneutralelement with respect to concatenation of words, i.e.
r.e=e.x == forall z € X*.

In the following, we will writezy for = . y.

For a wordw = zy with x,y € X* we callz a prefixandy a suffixof w. Prefixes and suffixes
are speciasubwords In general, wordy is a subword of wordu, if w = xyz for wordsz,y € X*.
Prefixes, suffixes and, in general, subwordsadre calledproper, if they are different fromo.

Subsets of* are called (formaljanguagesWe need some operations on languages. Assume that
L, Ly, Ly C X* are languages. Thaion L, U L, consists of all words fronk; andL»:

Ly LQ:{wEZ*|wEL10derw€L2}.

The concatenation’;. L, (abbreviated.; L») consists of all words resulting from concatenation of a
word from L with a word fromL.:

L1 .L2 = {Z‘y | S Ll,y € L2}
ThecomplemenL of languagél. consists of all words ir£* that are not contained if:
L=5"—1L.

For L C X* we denotel.” as then-times concatenation df, L* as the union of arbitrary concatena-
tions, andL™ as the union of non-empty concatenationd.of.e.

L™ ={wy...w, |wy,...,w, € L}
L* ={wy...w, | In>0.wy,...,w, € L} =

n

n

vCivC

OL
Lt ={wy...w, | In>0.wy,...,w, € L} = 1L

n

The operatiorf_)* is calledKleene-star
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Regular Languages and Regular Expressions

The languages described by symbol classes as they are isetbfy the scanner are non-emagular
languages

Each non-empty regular language can be constructed stavitiim singleton languages and applying
the operations union, concatenation, and Kleene-Stam&lby, the set of altegular languagesver an
alphabet? is inductively defined by:

The empty sefl and the sefc}, consisting only of the empty word, are regular .
The setga} for all a € X are regular ovel.

Are R, and R, regular languages over, so areR; U Ry, and Ry R».

Is R regular overy, then alsaR*.

According to this definition, each regular language can leeifipd by a regular expressidrRegular
expressiorover X' and the regular languages described by them are also defidectively:

e () is aregular expression over, which describes the regular langudge
e is aregular expression ovel, and it describes the regular langudgeé.

e Foreach: € X is a a regular expression over that describes the regular languggs .

e Are r; andry regular expressions over that describe the regular languagesand R, respec-
tively, then(ry | r2) and(r1r2) are regular expressions ovErthat describe the regular languages
Ry U Ry andR; Ry, respectively.

e Isr aregular expression over, that describes the regular langudgethenr* is a regular expres-
sion overY' that describes the regular language

In practical applications;? is often used as abbreviation for | ) and sometimes also" for the
expression{rr*).

In the definition of regular expressions we assumed thatyh#sls for the empty set and the
empty word were not contained B, similarly to the parentheseds) and the operatorsand: and
also?, +. These characters belong to the description mechanisredotar expressions and not to the
regular languages described by the the regular expresdibeyg are calledneta characterslowever,
the set of representable characters is limited, so that soeta characters may also appear in the
described regular languages. A programming system gemgistanners from descriptions given as
regular expressions needs to make clear when such a chasaeteneta character and when it is
a character of the language. One way to do this is tiesmmpe characterdn many specification
languages for regular languages theharacter is used as escape character. For example, teeapre
the meta charactéralso as a character of the alphabet one would precede it Witl$e, in a regular
expression, the vertical bar would be represented.as

We introdce operator precedences to save on parenthese®-dperator has the highest prece-
dence, follwoed by the Kleene-star)*, and then possibly the operator)*, then concatenation and
finally the alternative operator

Example 2.2.1 The following table lists a number of regular expressiometber with the languages
described by them, and some ot even all of their elements.

regular expressiofdescribed languagelements of the language
alb {a,b} a,b

ab*a {a}{b}*{a} aa, aba, abba, abbba, . . .
(ab)* {ab}* g, ab, abab, . ..

abba {abba} abba O

Regular expressions that contain the empty set as symbdlecaimplified by repeated application of
the following equalities:

0=
0=

*

r
=0

S 03

r
r

=
oS =
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The equality symbol, '=", between two regular expressiorans that both describe the same language.
We can prove:

Our applications only have regular expressions that deseron-empty languages. No symbol to de-
scribe the empty set is, therefore, needed. The empty worddded to represent empty alternatives.
The7-operator suffices to represent this. No extra representafithe empty word is needed.

Finite-State Machines

We have seen that regular expressions are used for the sp#aifiof symbol classes. The implemen-
tation of recognizers uses finite-state machines (FSMsite-state machines are acceptors for regular
languages. They maintain one state variable that can okdyda finitely many values, thetatesof

the finite-state machine. Fig. 2.1 shows that furthermond$-Bave an input tape and an input head,
which reads the input on the tape from left to right. The wogof the FSM is described byteansition
relation A.

Eingabeband _

(I T TTE T
—

Zustand

A

Kontrolle Y

Fig. 2.1. Schematic representation of a finite-state machine.

Formally, we represent aon-deterministic finite-state machine (withransitions)(NFSM) as a
tuple M = (Q, X, A, qo, F') where

Q is afinite set oktates

X is a finite alphabet, thimput alphabet

qo € Q is theinitial state,

F C Q is the set ofinal statesand

ACQ x (XU{e}) x Qs thetransition relation

A transition (p, z,q) € A expresses that/ can change from its current stgieinto the statg;. Is
x € X thenx must be the next character in the input and after readitg input head if moved by one
character. |s: = ¢ then no character of the input is read upon this transititve. ilput head remains at
its actual position. Such a transition is calleg-ansition

Of particular interest for implementations are finite-statachines without-transitions, which in
addition have in each state exactly one transition unden eharacter. Such a finite-state machine
deterministic finite-state machif®FSM). For such a DFSM the transition relatighis a Funktion
A:Qx X — Q.

We describe the workings of a DFSM in comparison with a DFSkEduss a scanner. The descrip-
tion of the working of a scanner is put into boxes. A deterstinifinite-state machine should check

whether given input words are contained in a language oltatcepts the input word if it arrives in a
final state after reading the whole word.
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A deterministic finite-state machine used as a scanner degcses the input word into a sequence of
subwords corresponding &ymbolsof the language. Each symbol drives the DFSM from its injtial
state into one of its final states.

The deterministic finite-state machine starts in its ihgtate. Its input head is positioned at the begin-
ning of the input head.

‘ A scanner’s input head is always positioned at the first nbtgaesumed character.

It then makes a numnber of steps. Depending on the actualastdtthe next input symbol the DFSM
changes its state and moves its input head to the next charélse DFSM accepts the input word when
the input is exhausted and the actual state is a final state.

Quite analogously, the scanner performs a number of stepepdrts that it has found a symbol jor
that it has detected an error when no further step is possible
If the actual state is not a final state and there is no tramsithder the next input character the scanner
returns to the last input character that brought it into d ftete for some symbol class. It delivers as

value this class together with the newly consumed prefix@friput. Then the scanner restarts injthe

initial state with its input head positioned at the first net gonsumed input character. The scanner
has detected an error if by rewinding the last transitiodsés not find a final state.

Our goal is to derive an implementation of an acceptor of aleedanguage out of a specification
of the language, that is, to construct out of a regular exgiwas a deterministic finite-state machine
that accepts the language described by a first step, amon-deterministidinite-state machine faris
constructed that accepts the language described loya second step this is made deterministic.

A finite-state machind/ = (Q, X, A, qo, F)) starts in its initial statgy, and non-deterministically
performs a sequence of stepganputationunder the given input word The input word is accepted if
the computation leads to a final state,

The future behavior of a finite-state machine is fully detieed by its actual state € @ and the
remaining inputwv € X*. This pair(¢, w) makes up theonfigurationof the finite-state machine. A
pair (g0, w) is aninitial configuration Pairs(q, £) such thay € F arefinal configurations

Thesteprelation - is a binary relation on configurations. Fpp € Q,a € YU {c} andw € X*
holds (¢, aw) k-, (p,w) if and only if (¢,a,p) € Aanda € X U {}. i—fw denotes the reflexive,
transitive hull of the relatiort; . The language accepted by the finite-state machinie defined as

L(M) = {w € X*|(qo, w) 5, (qr,¢) with g5 € F'}.

Example 2.2.2 Table 2.1 shows the transition relation of a finite-state mrae M in the form of a
two-dimensional matri¥’y,;. The states of the FSM are denoted by the numbers , 7. The alphabet
is the sef{0,...,9,., E,+, —}. Each row of the table describes the transitions for one®ftthtes of
the FSM. The columns correspond to the charactefsin{c}. The entryT’y;[q, 2] contains the set of
statesp such that(q, z,p) € A. The statd) is the initial state{1,4, 7} is the set of final states. This
FSM recognizes unsignéewt- andfloat-constants. The accepting (final) state 1 can be reachedghro
computations otnt-constants. Accepting states 4 and 6 can be reached flodeconstants. O

A finite-state machiné/ can be graphically represented as a fititssition diagram A transition
diagram is a finite, directed, edge-labeled graph. The cestof this graph correspond to the states
of M, the edges to the transitions &f. An edge fromp to ¢ that is labeled withz corresponds to

a transition(p, z, ¢). The start vertex of the transition diagram, correspondinthe initial state, is
marked by an arrow pointing to it. Thend verticescorresponding to final states, are represented by
doubly encircled vertices. Av-pathin this graph for a wordv € X* is a path from a vertey to a
vertexp, such thatw is the concatenation of the edge labels. The language @&ttbpil/ consists of

all words inw € X*, for which there exists a-Weg in the state diagram frogg to a vertexg € F'.

Example 2.2.3 Fig. 2.2 shows the transition diagram corresponding to thitefstate machine of ex-
ample 2.2.2. O
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(7]l @ | [B]+-]c]
0 || {12y | {8y | 0 0 )
1 1 0 0 0| {4
2 2y | {4y | 0 0 0
3 {4} 0 0 0 )
4 {4} 0 | {5} 0 | {7
5 0 0 0 | {6} | {6}
6 7 0 0 0 0
7 7 0 0 0 0

Table 2.1. The transition relation of a finite-state machine to recpgninsignednt- andfloatconstants. The first
column represents the identical columns for the digits0, . . . , 9, the fifth the ones for and—.

Fig. 2.2. The transition diagram for the finite-state machine of Exien2p2.2. The charactei stands for the set
{0,1,...,9}, an edge labeled withi for edges labeled with, 1, . .. 9 with the same source and target vertices.

Acceptors

The next theorem guarantees that a non-deterministic-Stétie machine can be constructed for a
regular expression.

Theorem 2.2.1 For each regular expressieover an alphabeY there exists a non-deterministic finite-
state machind/,. with input alphabe#’, such that_(},.) is the regular language describediby

We now present a method that constructs the transition amagf a non-deterministic finite-state ma-
chine for a regular expressienover an alphabe¥. . The construction starts with an edge leading from
the initial state to a final state. This edge is labeled with

r will be decomposed according to its syntactical structarel in parallel the transition diagram is
built up. This is done by the rules of Fig. 2.3. They are agpliatil all remaining edges are labeled
with (), € or characters fron. Thenm, the edges labeled withare removed.

The application of a rule replaces the edge whose label ishredtby the label of the left side
by a corresponding copy of the subgraph of the right sidectxane rule is applicable for each
operator. The application of the rule removes an edge ldheith a regular expressionand inserts
new edges that are labeled with the argument expressiohs otitermost constructor in The rule for
the Kleene-star inserts additiorrabdges. This method can be implemented by the followingnairog
shippet if we take natural numbers as states of the finite-stachine.
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Fig. 2.3. The rules for the construction of a finite-state machine fgular expression.

trans «— 0;
count «— 1;
generate(0,r, 1);

return (count, trans);

The settrans globally collects the transitions of the generated FSM,thedjlobal countetount keeps
track of the largest natural number used as state. A call togepuregenerate for (p, 7/, ¢) inserts all
transitions of a finite-state machine for the regular exgogs”’ with initial statep and final state into
the settrans. New states are created by incrementing the coumtett. This procedure is recursively
defined over the structure of the regular expression

void generate (int p, Exp /,int ¢) {

}

switch (') {

case (r1 | o) :

case (r1.13) :

case 1] :

case () :

case r :

generate(p, 71, q);

generate(p, 2, q); return;

int ¢1 «— ++count;

generate(p, 71, q1);

generate(q1, 72, q); return;

int ¢1 «— ++count;

int qo «— ++count;

trans < trans U {(p, e, q1), (q2,€,4), (¢2,£,q1)}
generate(q1, 71, g2); return;

return;

trans — trans U {(p, z,q)}; return;

Exp denotes the type 'regular expression’ over the alphaheéive have used aaJa -like program-
ming language as implementation language. $échstatement was extended pgttern matching

to elegantly deal with structured data such as regular ssjes. this means that patterns are not only
used to select between alternatives but also to identifygbatructures.

A procedure callgenerate(0,r, 1) terminates aftern rule applications where is the number of
occurrences of operators and symbols in the regular expressif [ is the value of the counter after
the call, the generated FSM hég, ..., [} as set of states, where 0 is the initial state and 1 the only
final state. The transitions are collected in thetsets. The FSMM,. can be computed in linear time.
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Example 2.2.4 The regular expressiof(a | 0)* over the alphabefa, 0} describes the set of words
{a,0}* beginning with aru. Fig. 2.4 shows the construction of the state diagram of a tiBBaccepts
this language.

O

a(al0)* angewandte Rege

0@ W@ (K)

Fig. 2.4. Construction of a state diagram for the regular expressian 0)*

The Subset Construction

For implementationgjeterministidinite-state machines are preferable to non-determirfisite-state
machines. A deterministic finite-state machihehas no transitions underand for each paifq, a)
with ¢ € @Q anda € X, it has exactly one successor state. So, for each gtimtél/ and each word
w € X* it has exactly onev-path in the transition diagram @ff starting ing. If ¢ is chosen as initial
state ofM thenw is in the language aof/ if and only if this path leads to a final state f. Fortunately,
we have Theorem 2.2.2.

Theorem 2.2.2 For each non-deterministic finite-state machine one castoact a deterministic finite-
state machine that recognizes the same langudge.

Proof. The proof is constructive and provides the second step afeéheration method for scanners.
It uses thesubset constructiaiet M = (Q, X', A, qo, F') be an NFSM. Goal of the subset construction
is to construct a DFSNP (M) = (P(Q), X, P(A), P(q)P(F)) that recognizes the same language as
M. Forawordw € X* letstates(w) C @Q be the set of all statese @ for which there exists a-path
leading from the initial statg, to . The DFSMP (M) is given by:

J

Q) = {states(w) | w € X*}

(qo0) = states(e)

(F) = {states(w) | w € L(M)}

(A)(S,a) = states(wa) for S € P(Q) anda € X' if S = states(w)

Y Y I

We convince ourselves that our definition of the transitiamction?(A) is reasonableTo do this we
show that for wordsv, w’ € X* with states(w) = states(w’) it holds thatstates(wa) = states(w’a)
forall « € X. It follows in particular thatV/ andP (M) accept the same language.
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We need a systematic way to construct the states and thé&ivaa®fP (M ). The set of final states
of P(M) can be easily constructed if the set of state®(#/) is known because it holds:

PF)={AeP(M)| ANF # 0}
For a setd C () we define the set af-successor state$ as

FZ.(S)={peQ|3qeS.(¢,e)F;, (p.e)}

This set consists of all states that can be reached fronsstateby «-paths in the transition diagram
of M. This closure can be computed by the following function:

set(state) closure(set(state) S) {
set(state) result — 0;
list(state) W « list_of(S);
state q,q';
while (W #[]) {
q — hd(W); W —tl(W);
if (¢ & result) {
result «— result U {q};
forall (¢': (¢q,e,¢') € A)
W —q =W;

}

return result;
}

The states of the non-deterministic finite-state machiaetrable fromA are collected In the setsult.
The listW contains all elements iresult whoses-transitions are not yet processed. As longlass
not empty, the first state from W is selected. To do this, functiohsl andtl are used that return the
first element and the tail of a list, respectivelyylalready contained iresult nothing needs to be done.
Otherwise is inserted into the seksult. The all transitiongq, €, ¢’) for ¢ in A are considered and
the successor statgsare added tdV. By applying the closure operatbZ,. (_), the initial stateP(qo)

of the subset automaton can be computed:

P(qo) = S = FZc({qo})

To construct the set of all staté¥ M) together with the transition functioR(A) of P(M), book-
keeping of the sef)’ C P(M) of already generated states and theset_ P(A) of already created
transitions is performed. Initially)’ = {P(qo)} andA’ = 0.

Forastated € Q' and each: € X its successor staté’ undera and@’ and the transitio(S, a, S”)
are added toA. The successor stat€ for S under a character € X' is obtained by collecting the
successor states of all states S undera and adding alk-successor states:

S = er({p € Q | 3q €S (Qaa7p) € A})

The functionnextState() serves to compute this set:

set(state) nextState(set(state) S, symbol x) {
set(state) S’ — 0;
state q,q';
forall (¢ : g€ S,(q,z,¢') € A) " — S"U{d};
return closure(q);

}
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The extensions a’ andA’ are performed until all successor states of the stat€$ imder characters
from X are already contained in the g@t. Technically, this means that the set of all stattgesand
the set of all transitionfrans of the subset automaton can be computed iteratively by thenimg
loop:
list(set(state)) W;
set(state) Sy — closure({qo});
states — {So}; W «— [Sol;
trans « (;
set(state) S,5’;
while (W # [)) {
q < hd(W); W —tl(W);
forall (z € X)) {
S’ « nextState(S, x);
trans < trans U {(S,z,5")};
if (S’ ¢ states) {
states — states U {S"};
W —Wu{s'}

a

Example 2.2.5 The subset construction, applied to the finite-state maabiifiexample 2.2.4 could be
executed by the steps described in Fig. 2.5. The states @RS to be constructed are denoted by
primed natural numbef®, 1’, .. .. The initial state)’ is the set{0}. The states i)’ whose successor
states are already computed are underlined. The Stat¢he empty set of states, i.e. tagor state It
can never be left.

Itis the successor state of a statendera if there is no transition underfrom ¢ heraus. O

Minimization

The deterministic finite-state machines generated fromlage@xpressions in the first two stepss are in
general not the smallest possible that would accept thexd@reguage. There might be states that have
the samecceptance behaviowe say, stateg andg of a DFSM have the same acceptance behavior if
the DFSM goes fromp andgq either under all input words into a final state or under alLingwords into
a non-final state. Led! = (Q, X, A, qo, F') be a deterministic finite-state machine. To formalize the
concept, same acceptance behavior, we extend the tranfsitiotionA : Q x X' — @ of the DFSM
M function A* : Q x X* — @ that maps each paiy, w) € @ x X* to the unique state in which
ends thav-path fromq in the transition diagram af/. The functionA* is defined inductively over the
length of words:

A*(g.e) =q und A*(g,aw) = A*(A(q,a), w)

forallq € Q,w € X* anda € Y. Statep, ¢ € Q have the same acceptance behavior if
A*(p,w) € F ifandonlyif A*(q,w) € F

In this case we writ@ ~j; ¢. The relation~,, is an equivalence relation @p. The DFSMM is called
minimalif the equivalence relatior- ), is trivial, that is, there are no states# ¢ in Q with p ~,/ g.
For each DFSM a minimal DFSM can be constructed, which is eméue up to isomorphism. This is
the claim of the following theorem.
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Fig. 2.5. The subset construction for the NFSM of Example 2.2.4
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Theorem 2.2.3 For each deterministic finite-state machife a minimal deterministic finite-state ma-

chine M’ can be constructed that accepts the same langualje dhis minimal deterministic finite-

state machine is unique up to renaming of states.

Proof.

For a deterministic finite-state machidé = (Q, X, A, qo, F)) we define a deterministic

finite-state machind!’ = (Q', X, A, ¢{, F') that is minimal. As set of states of the deterministic

finite-state machin@/’ we choose the set of equivalence classes of states of the DESiMder~ ;.

For a statey € @ let [¢],s be the equivalence class of statgwith respect to the relation , i.e.

v ={peQ|q~np}

The set of states a¥/’ is given by:

Q ={ldm|qe€Q}

Correspondingly, the initial state and the set of final stafel/’ are defined by

9o = laolm F' ={lglm | g€ F},

and the transition function of/ for ¢’ € Q' anda € X is defined by

One convinces oneself that the new transition functidns well-defined, i.e. that fofg1]as = [g2]m

A'(q.a) = [Alg,a)ln forag e Q suchthay’ = [qly.

it holds[A(q1,a)]ar = [Alge, a)]a for all a € X. Furthermore, one shows that

A*(q,w) € Fifandonlyif (A")*([¢]am,a) € F’
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holds for all¢ € @ andw € X*. This implies thatL(M) = L(M’). We claim that the DFSM
M’ is minimal. To show this we assume there were still stédelss # [¢2]n in M’ that had the
same acceptance behaviorf'. This would mean thatA’)*([¢1]a, w) € F’ holds if and only if
(A")*([ga]ar, w) € F'. Butthen also holdg\* (q;,w) € F ifand only if A*(go, w) € F. Thereforeq;
andg. would have the same acceptance behavidtin.e.q; ~ s g2. But since~,; is an equivalence
relation this means thég |a; = [¢2] s, Which is a contradiction to our assumptiort

We conclude thad/’ is indeed the desired minimal deterministic finites-stagehine. The practi-
cal construction of\/’ requires to compute the equivalence clasgpg of the relation~ ;.

Wereeachstate a final state, i.6) = I’ then all states were equivalent, afjd= [¢o]rs were the
only state ofM’.

Let us assume in the following that not every state is a firetesti.e.Q # F. The algorithm
manages atrtition I7 on the set) of the states of the DFSM/. A partition on the sef) is a set of
non-empty subsets @j, whose union i%).

A partition [T is calledstableunder the transition relatioA, if for all ¢’ € IT and alla € X there
isap’ € II such that

{A(g,a) lged} S
In a stable partition, all transitions from one set of thetiian lead into exactly one set of the partition.

In the partitioniI, the sets of states are managed of which we assume that thieytHesame
acceptance behavior. If it turns out that aget I contains states with different acceptance behavior
then the set/’ is split up. Different acceptance behavior of two stateandg; is recognized when the
successor state$(qq, a) andA(qz, a) foraa € X lie in different sets ofI. The partition is apparently
not stable. Such a split of a set in a partition is catifthemenbf /7. The successive refinement of the
partition I7 terminates if there is no need for further splitting of anyieehe obtained partitionl] is
stable under the transition relatiah

The construction of the minimal deterministic finite-statachine proceeds as follows: The parti-
tion I7 is initialized with IT = {F, Q\ F'}. Let us assume that the actual partitiinof the setQ) of
states ofM’ is not yet stable undef. Then there exists a sgt € IT and aa € X such that the set
{A(q,a) | ¢ € ¢’} is not completely contained in any of the setgine I7. Such a set’ is then split
to obtain a new partitiori/’ that consists of all non-empty elements of the set

{Heed | Alga) ep'} | P € 1T}

The partition/I’ of ¢’ consists of all non-empty subsets of states fgdinat lead unded into the same
sets inp’ € II. The sety’ in I1 is replaced by the partitioff’ of ¢/, i.e. the partition/I is refined to the
partition (IT\{¢'}) U II".
If a sequence of such refinement steps arrives at a stableéqueirt 17 the set of states o/’ has
been computed.
IT'=A{[qlm | g € Q}

Each refinement step increases the number of sets in parfitioA partition of the set) may only
have as many sets gshas elements. Therefore, the algorithm terminates aftiéslfirmany steps. The
proof that the minimal DFSM is unique up to renaming of st&dke subject of Exercise 9.0

Example 2.2.6 We illustrate the presented method by minimizing the deiistic finite-state machine
of Example 2.2.5. At the beginning, partitidh is given by

{{07, 3}, {1,2'} }

This Partition is not stable. The first sgt’, 3} must be split into the partitiofl’ = {{0"}, {3'}}. The
coreresponding refinement of partitidéhproduces the partition

{0}, {3}, {1, 2'}}

This partition is stable unded. It therefore delivers the states of the minimal deterntimfinite-state
machine. The transition diagram of the so constructed atéstic finite-state machine is shown in
Fig.2.6. O
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Fig. 2.6. The minimal deterministic finite-state machine of Exampk &

2.3 A Language for the Specification of Lexical Analyzers
We have met regular expressions as specifcation mechaaisyrhbol classes in lexical analysis. For
practical purposes, one often would like to have somethiagemmomfortable.

Example 2.3.1 The following regular expression describes the languageneignednt-constants of
Examples 2.2.2 and 2.2.3.

(0[1]213]4]5]6|7[8|9)(0[1|2(3[4[5]6]7|8]9)"

A similar specification ofloat-constants would stretch over three linesl

In the following, we will present some extensions of the figation mechanism that increase the
comfort, but not the expressive power of this mechanism.clés of languages that can be described
remains the same.

2.3.1 Character classes

In the specification of a lexical analyzer, one should be sblgroup sets of characters inttassesf
these characters can be exchanged against each othertvttamging the symbol class of symbols in
which they appear. This is particularly helpful in the caééagye classes, for instance the class of all
Unicodecharacters. Examples of frequently occurring charadéeses are:

bu=a—-24A-7
zi =0-9

The first wo definitions of character classes define classasibyg intervals in the underlying character
code, e.g. the ASCII. Note that we need another meta char&ttéor the specification of intervals.
Using this feature, we can nicely specify the symbol clasdeftifiers:

Id = bu(bu | zi)*
The specification of character classes only uses three thataater, namely=",” —', and the blank.

Example 2.3.2 The regular expression for unsignied- andfloat-constants is simplified through the
use of the character classgs= 0 — 9 to:

zi zi*
Zi ZiI"E(+ | —)?zi zi* | zi*(.zi | zi.)zi" (B (+ | —)?zi zi")?
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2.3.2 Non-recursive Parentheses

Programming languages have lexical units that are chaizetiby the enclosing parentheses. Exam-
ples are strings and comments. . Parentheses limiting coisroan be composed of several characters:
(x andx) or /+ andx/ or // and\n (newline). More or less arbitrary texts can be enclosed é& th
opening and the closing parentheses. This is not easilyidedc A comfortable abbreviation for this
is:

1 until T9

Let L1, Lo the languages described by bzw. o where L, does not contain the empty word. The
language described by thiatil-expression is:

Ly X*LoX* Lo
A comment starting with// and ending at the end of line can be described by:

// until \n

2.4 Scanner Generation

Section 2.2 described methods to derive a non-deterndriisite-state machine from a regular ex-
pression, from this a deterministic finite-state machimel, #nally a minimal deterministic finite-state
machine. In what follows we present the necessary exterigiathe practical generation of scanners
and screeners.

2.4.1 Character Classes

Character classes were introduced to simplify regularesgions. They may also lead to smaller finite-
state machines. The character-class definition

bu=a-—z
zi =0-9

can be used to replace the 26 transitions between states lettdes by one transition undéu. This
simplifies the FSM for the expression

Id = bu(bu | zi)*
considerably. The implementation uses a mydpat associates each characi@vith its class or practi-
cally with a code for the class. This map is stored in an amdgxed by the character codes. The array
components contain the code for the character class. Im findg to be a function each character must
be member of exactly one character class. Character classesplicitly introduced for characters that
don’t explicitly occur in a class and those that occur digeict a symbol-class definition. The problem
of non-disjoint character classes is resolved by refiniegdlhasses to become disjoint. Let us assume
that the classes,, .. ., z; were specified. The generator introduces for each intéosegt N ... N Zx
that is non-empty a new character clagsither denotes; or the complement of;. Let D be the set of
these newly introduced character classes. Each chardasseccorresponds to one of the alternatives
d; = (d;1 | ... | dir,) of character classes . Each occurrence of the character class the regular
expression is then replaced By

Example 2.4.1 Let us assume we had introduced the two classes
bu =a-—=z
buzi=a—20-9

to define the symbol class&s = bu buzi*. The generator would divide one of these character classes
into

zi’ = buzi\bu

bu’ = bu N buzi = bu

The occurrence dfuzi in the regular expression will be replaced by’ | zi'). O
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2.4.2 An Implementation of theuntil-Construct

Let us assume the scanner should recognize symbols whosebgiass is specified by the expression
r = 7 until ro. After recognizing a word of the language for "uyr it needs to find a word of the
language for, and then halt. This task is a generalization of plagtern-matchingroblem on strings.
There exist algorithms for this problem that solve this peabfor regular patterns in time, linear in the
length of the input. These are, for example, used in thexdorogram EREP. They construct a finite-
state machine for this task. One could solve the task predaitove by starting such an automaton in
the final state of an automatdd; that recognizes the language fqr We will not do this, but present
an approach to construct such an automaton.

Let L1, Lo be the languages described by the expressipasdrs. The languagé. defined by the
expression; until ro is:

L =1L X*LaX™* Ly

The process starts with automata for the languageand L., decomposes the regular expression
describing the language, and applies standard constngdto automata. The process has the following
seven steps: Fig. 2.7 shows all seven steps for an example.

1. The first step constructs FSMg; and M- for the regular expressions, o whereL(M;) = L,
andL(Ms) = L. A copy of the FSM forl/, is needed for step 2 and one more in step 6.
2. AFSM M3 is constructed fob>* Lo, 3* using the first copy of/s.

OE
/Q—E' oM O HE@

The FSM M3 non-deterministically accepts all words ovEithat contain a subword frorhs.

3. The FSMMj3 is transformed into a DFSM/,, by the subset construction.

4. A DFSM Mj5 is constructed that recognizes the languageXfof. X *. To achieve this, the set of
final states of\/, is exchanged with the one of non-final states. Each statevidat final state is
now a non-final state and vice versa. In particuldy, accepts the empty word since according to
our assumptions ¢ L. Therefore, the initial state dif/5 also is a final state.

5. The DFSMM; is transformed into a minimal DFSM/. All final states of)M, are equivalent and
dead since it is not possible to reach a final stat&fefrom any final states a#/4. This error state
is removed.

6. Using the FSMs\/, M> for L, and Ly, and Mg a FSM M7 for the languagd.; X% Lo X* Lo is
constructed.

Mg €
40 M OF— @Eg;@%@

From each final state af/; including the initial state of\/g, there is a-transition to the initial
state ofM,. From there paths under all wordse Lo lead into the final state af/;, which is the
only final state ofM/.

7. The FSMM?~ is converted into a DFSM/g and possible minimized.

2.4.3 Sequences of regular expressions

Let a sequence
Toy -3 Tn—1

of regular expression be given for the symbol classes to ¢xgrézed by the scanner. A scanner rec-
ognizing the symbols in these classes can be generatedfillthweing steps:
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/@L’@—y’ NEA fiir {zy}

g g
€ x Y € NEA fir
/@ @ @ @ Y {ay X

DEA fir
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Fig. 2.7. The derivation of a DFSM fot until zy with z,y, z € X.

1. Inafirst step, FSM3/; = (Q:, X, A;, qo.4, F;) for the regular expressions are generated where
the@; should be pairwise disjoint.

2. The FSMsM; are combined into a FSM/ = (X, Q, A, qo, F') iby adding a new initial state,
together withe-transitions to the initial stateg ; of the FSMsM;. The FSMM, therefore, looks
as follows:

Q={0}UQU...UQ,_1 furein ¢ gQU...UQ,_1
F=FU...UF,_
A:{(qO,E,qOJ‘)|0§Z.§7’L71}UA0U...UAH,1.

The FSMM for the sequence accepts tln@ionof the languages that were accepted by the FSMs
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M;. The final state reached by a succesful run of the automathceites to which class the found
symbol belongs.
. The subset construction is applied to the F&Mresulting in a determinstic finite-state machine
P(M). Awordw is associated with theth symbol class if it belongs to the languagegfbut to
no language of the other regular expressiong < i. Expressions with a smaller index are here
preferred over expressions with larger indices.
To which symbol class a word belongs can be computed by the DF$MM ). The wordw
belongs to the-th symbol class if and only if it drives the DFS® (M) into a statey’ C @ such
that

¢dNE,#0 und ¢ NF; =0 furallej <i.

The set of all these statesis denoted by,

. After this stp, one may minimized the DFSPRI{ M ). During minimization, the sets of final states
F; and Fj for i # j should be kept separate. The minimization algorithm shdbktefore, start
with the initial partition

n—1

H:{F(ngllv""Fr/zflvp(Q)\igoFi/}

Example 2.4.2 Let the following sequence of character classes be given:

zi =0-9
hex=A—-F
The sequence of regular definitions
zizi

h(zi | hex)(zi | hex)*

for the symbol classdatconst andHexconst are processed in the following steps:

e FSMs are generated for these regular expressions.

The final staté, stands for symbols of the clabsconst, while the final staté; stands for symbols
of the clasHexconst.
e The two FSMs are combined with a new initial stage



28 2 Lexical Analysis

e The resulting FSM is then made deterministic:

zi

ﬂ

/@<
hex Qhex

An additional state 4 is needed, the error state correspgridithe empty set of original states.
This state and all transitions into it are left out in the giéion diagramm in order to keep the
readability.

e Minimzation of the DFSM does not change it in this example.

The new final state of the generated DFSM contains the old sta&i, and, therefore, signals the
recoginition of symbols of symbol classtconst. Final state 3 containks; and, therefore, signals the
symbol clas$Hexconst.

Generated scanners always search for longest prefices i@rttaning input that leads into a final
state. The scanner will, therefore, make a transition ostate 1 if this is possible, that is, if a digit
follows. If the next input character is not a digit, the scanshould return to state 1 and reset its reading
head. O

2.4.4 The Implementation of a Scanner

We have seen that the core of a scanner is a deterministiestiaie machine. The transition function of
this machine can be represented by a two-dimensional detay. This array is indexed by the actual
state and the character class of the next input charactersé&lected array component contains the
new state into which the DFSM should go when reading thisadtar in the actual state. States and
character classes are coded at non-negative integersctessaaleltalq, ] is usually fast. However,
the size of the arraglelta may be large. This DFSM often contains many transitionstimécerror state
error. We, therefore, choose this state as deéault valuefor the entries indelta. It then suffices to
only represent transitions into non-error states. Thishinigad to a sparsely populated array, whcih
can be compressed using well-known methods. These savespach at the cost of slightly increased
access time. It should not be forgotten that the now emptyesntepresent transitions into the error
state. These are still relevant for the scanners erroctietecapabilities. Thus, this information must
still be available.

Let us consider one such compression method. Instead af theéroriginal arraylelta to represent
the transition function we represent it by an arRgwPtr, which is indexed by states and whose
components are addresses of the original rondettf, see Fig. 2.8.

RowPtr

Deltalq, a

Fig. 2.8. Representation of the transition function of a DFSM.
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We haven’t won anything, yet, but even lost access efficieAsysaid above, the rows afkelta
to which entries inRowPtr point are often almost empty. The rows will, therefore, bertaid into
a 1-dimensional arralelta in such a way that non-empty entriesdefta do not collide. To find the
starting position for the next row to be inserted ibtelta one can use thierst-fit-strategy. This row will
be shifted over the arrayelta starting at its beginning, until no non-empty entries o$ttaw collide
with non-empty entries already allocatedDalta.

The index inDelta at which theg-th row of delta is allocated is stored iRowPtr[q]. See Fig. 2.9.

Zeile fur Zustandy

Zeile fur Zustang

RowPtr Delta

| == 7=

nichtleere Eintrage fir Zustand
E nichtleere Eintrage fir Zustand

Fig. 2.9. Compressed representation of the transition function ofF &I.

One problem is that the represented DFSM has lost its abdlitgentify errors, that is, undefined
transitions. Let us consider an undefined enfify, a), representing a transition into the error state.
However Delta[RowPtr[g] +a] might contain a non-empty entry stemming from a shifted réwstate
p # q. Another 1-dimensional arrayalid is added, whcih has the same lengtiDa&a. It contains the
information to which states the entrieselta belong. This means thatalid[RowPtr[q] + a] = q if
and only if A(q, a) is defined. The transition function of the deterministicdistate machine can then
be implemented by a functiarext() as follows:

State next (State g, CharClass a) {
if (Valid[RowPtr[g] + a] # ¢) return error;
return Delta[RowPtr[q] + al;

2.5 The Screener

Scanners can be used in many applications, even beyond thesjplitting of a stream of characters
according to a specification by regular expressions. Healse,scanner generators are useful to auto-
matically implement scanners. Scanner often can do morespiéting character streams, for instance
processing the tokens found in the stream.

To specify this extended functionality, each symbol clasy imave an associated semantic action.
A screener can, therefore, be specified as a sequence obptiesform

70 {actiong }

Tr—1 {action,,_1 }
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where the-; are possibly extended regular expressions over chardasses specifying thieth symbol
class, and actigndenotes the semantic action to be executed when a symboisofl&ss is found.
The semanic actions are specified as code in a particulaapnming language if the screener is to be
implemented in this programming language. Different laaggs offer different adequate ways to return
a representation of a found symbol. An implementation in Qildiofor instance, return aimt-value

as code for a symbol class. All other concerned values aredstoto global values. Somewhat more
comfort would be offered for an implementation of the scexén a modern object-oriented languages
such as Ava. One could introduce a cla3sken whose subclass&$ would correspond to the symbol
classes. The last statemenaiction; should be aeturn-statement returning an object of classwhose
attibutes would store all properties of the identified symboa functional language such a<@wL,
one could supply a data typeken whose constructor§); correspond to the different symbol classes.
The semantic action actipis written in the form of an expression of typeken whose value”;(. . .)
represents the identified symbol of cl&ss

Semantic actions often need to access the text of the agimélad. Some generated scanners have
access to it in globalvariableyytexzt. Further global variables contain information such as thetpn
of the actual symbol in the input. These are important foigdeeration of meaningful error messages.
Some symbols should be ignored bu the screener. Insteatlofireg such a symbol to the parser the
scanner would be asked for the next symbol from the inputekample, a comment might have to be
skipped or a compiler directive might be realized and the sgmbol be asked for. In a generator for
C oder AvA noreturn-statement would terminate the semantic actions.

A functionyylex() is generatd from such a specification. It returns the nexbtejmvery time it is
called. Let us assume a a functigran() has been generated for the sequence. ., r,_; of regular
expression. It would store the next symbol as a string in thlead variableyytext and return the number
1 of the class of ths symbol. The functigglex() might then be

Token yylex() {
while(true)
switch scan() {
case ( : actiong; break;

casen — 1 : action,_1; break;

default : return error();

}
}

The functiorerror() handles the case that an error occurs while the scannemastémdentify the next
symbol. If an actioraction; does not have geturn-statement the this action will resume execution at the
beginning of theswitchrstatement and reads the next symbol in the remaining iffgtiloess possess
areturn-statement, executing it will terminate teitchstatement, thevhile-loop and the actual call

of the functionyylex().

2.5.1 Scanner States

Sometimes it is useful to recognize different symbol claskgpending on some context. Many scanner
generators produce scanners wattanner statesThe scanner may pass from one state to another one
upon reading a symbol.

Example 2.5.1 Skipping comments can be elegantly implemented using scastates. For this pur-
pose, a distinction is made between a statenal and a stateomment.

Symbols from symbol classes that are relevant for the seosaante processed in statermal. An
additional symbol clas€ommentlInit contains the start symbol of a comment, €.g. The semantic
action triggered by recognizing the symbel switches to stateomment In statecomment, only the
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end symbol for comments;/, is recognized. All other input characters are skipped. 3¢mantic
action triggered upon finding the end-comment symbol swidiack to stateormal.

The actual scanner state can be kept in a global varigBlete. The assignmenjystate <« state
changes the state to the new statee. The specification of a scanner possessing scanner statdsha
form

Ap : class_listg

A,_1:  class_list,_q

where class_list; is the sequence of regular expressions and semantic aétiostate A;. For the
statesormal andcomment of Example 2.5.1 we get

normal :
/* { yystate — comment; }
// further symbol classes
comment :

x/ { yystate «+ normal; }

{3}

The character stands for an arbitrary input symbol. Since none of the astfor start, content, or end
of comment has eeturn-statement no symbol is returned for the whole comment.

Scanner states only influence the selection of symbol dastahich symbols are recognized. To
classify symbols according to scanner states the generptimcess of the functiopylex() can be
applied to the concatenation of the sequesiaes_list ;. The only function that needs to be modified is
the functionscan(). To identify the next symbol this function has no longeedeterministic finte-state
machine but a particular oné/;, for each subsequencéuss_list;. Depending on the actual scanner
stateA; first the corresponding DFSM; is selected and used for the identification of the next symbol

2.5.2 Recognizing Reserved Words

Many possibilities exist for the distribution of duties Wween scanner and screener and for the func-
tionality of the screener. The advantages and disadvamtagenot easily determined. One example for
two alternatives is the recognition of keywords. Accordioghe distribution of duties given in the last
chapter, the screener is in charge of recognizing resemmatvals (keywords). One possibility to do
this is to form an extra symbol class for each reserved wagd 2710 shows a finite-state machine that
recognizes several reserved words in its final states. Regsé&eywords in C,A&vAa and CcAML have
the same form as identifiers. An alternative to recognizirggt in the final states of a DFSM is to let
the screener do it when it processes found identifiers.

The functionscan() will signal that an identifier has been found. The semantiba@ssociated
with the symbol clas&dentifier will then check whether and if yes which keyword has been doun
This distribution of work between scanner and screenerktepsize of the DFSM small. On the other
hand, an efficient way to recognize keywords should be used.

Identifiers are often internally represented by uniguevalues. The screener typically uses a hash
table to compute this internal code. A hash table suppoet®fficient comparison of a newly found
identifier with identifiers that have already been enterddriee The keywords should be entered into the
table before lexical analysis starts. The screener candeerify strings with the same effort necessary
for other identifiers.

2.6 Exercises

1. Kleene-Star
Let X be an alphabet and, M C X*. Show:
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“0—-0—-0—-@—>0—0
i@f
Z@n@t@
@ tE (@)
B @B B (D)

Fig. 2.10. Finite-state machine for the recognition of identifiers &agiwordsclass, new, if, else, in, int, float,
string.

a) L C L~

b) e € L*.

C) u,v € L* impliesuv € L*.

d) L*isthe smallest set with properties (1) - (3), that is, if a/gesatisfies:
LCM,ee Mand(u,v e M = wv e M)itfollows L* C M.

e) L C M impliesL* C M*.

) (L) =L".

. Symbol classes

FORTRAN provides the implicit declaration of identifiers accordiogheir leading character. Iden-
tifiers beginning with one of the letteisj, k, [, m, n are taken amt-variables oint-function result.
All other identifiers denotéloat-variables.

Give a definition of the symbol classEkatld andintld.

. Extended regular expressions

Extend the construction of finite-state machines for reges@ressions from Fig. 2.3 in a way that
it processes regular expressiorisandr? directly.r™ stands forr* andr? for (r | ).

. Extended regular expressions

Extend the construction of finite-state machines for regekaressions by a treatmentafunting
iteration, that is, by regular expressions of the form:

r{u— o} at least, and at mosb consecutive
instances of

r{u—} at leastu consecutive instances of

r{—o} at mosto consecutive instances of

. Deterministic finite-state machines

Convert the finite-state machine of Fig. 2.10 into a deteistinfinite-state machine.
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Sequences of regular definitions
Construct a deterministic finites-state machine for theisage of regular definitions:

bu (bu | zi)*
bu& (bu | zi)*
bu bu& (bu | zi)*

for symbol classekl, Sysld andComld.

Character classes and symbol classes
Consider the following definitions of character classes:

bu =a—-z
zi =0-9
bzi=0]1
ozi=0—-7

hzi=0-9|A-F
and the definitions of symbol classes:

bbzit

oozt

h hzi™

ZIJr

bu (bu | zi)*

a) Give the partitioning of the character classes that arsragenerator would compute.
b) Describe the generated finite-state machine using thesacter classes.
c) Convert this finite-state machine into a deterministie.on

Reserved identifiers
Construct a deterministic finite-state machine for thedisitate machine of Fig. 2.10.

. Unigueness of minimal automata

Let M = (Q, X, A, q, F) a minimal deterministic finite-state machine with(A/) = L. Let
M = (Q', X, A, ¢, F') another minimal deterministic finite-state machine witt\/’) = L.
Prove thatV/ and M’ are identical up to the renaming of states.

Define a relationvC Q x @’ with

q~q falls (Vwe Xx.Alqw) e F < A(d,w) e F').

Show that this relation relates each elemenfdb exactly one element i@’. Show in particular
thatgo ~ ¢, holds. Derive the claim from this.

Table compression
Compress the table of the deterministic finite-state machging the method of Section 2.2.

Processing of Roman numbers

a) Give aregular expression for Roman numbers.

b) Generate a deterministic finite-state machine from ggsilar expression.

c) Extend this finite-state machine such that it computesiéoémal value of a Roman number.
The finite-state machine can perform an assignmemnévariablew with each state transition.
The value is composed of the value wfand of constantsw is initialized with 0. Give an
appropriate assignment for each state transition suchitbantains the value of the recognized
Roman number in each final state.
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12. Generation of a Scanner
Generate a OAML-functionyylex from a scanner specification inCAmL.
Use wherever possible only functional constructs.

a) Write a functiorskip that skips the recognized symbol.
b) Extend the generator by scanner states. Write a funatininthat receives the successor state
as argument.

2.7 Literature

The conceptual separation of scanner and screener wadapeaposed by F.L. DeRemer [DeR74].
Many so-called compiler generators support the generatiecanners from regular expressions. John-
son u.a. [JPARG68] describes such a system. The corresgpraditine under Wix, LEX, was realized
by M. Lesk [Les75]. EEX was implemented by Vern Paxson. The approach describedsiotthpter
follows the scanner generatorLIX for JAVA.

Compression methods for sparsely populated matrices pgémerated in scanner and parser gen-
erators are described and analyzed in [TY79] and [DDH84].



