
Contents

1 The Structure of Compilers .. . 1
1.1 Subtasks of compilation .. 2
1.2 Lexical Analysis .. 2
1.3 The Screener .. 3
1.4 Syntactic Analysis .. 4
1.5 Semantic Analysis .. 5
1.6 Machine-Independent Optimization 5
1.7 Memory Allocation .. 6
1.8 Generation of the Target Program .. 6
1.9 Specification and Generation of Compiler Components 8
1.10 Literature .. 9

2 Lexical Analysis 11
2.1 The Task of Lexical Analysis .. 11
2.2 Regular Expressions and Finite-State Machines 12

2.2.1 Words and Languages 12
2.3 Language for the Specification of Lexical Analyzers 23

2.3.1 Character classes .. 23
2.3.2 Non-recursive Parentheses. .. 24

2.4 Scanner Generation .. 24
2.4.1 Character Classes .. 24
2.4.2 An Implementation of theuntil-Construct . 25
2.4.3 Sequences of regular expressions 25
2.4.4 The Implementation of a Scanner 28

2.5 The Screener .. 29
2.5.1 Scanner States .. 30
2.5.2 Recognizing Reserved Words .. 31

2.6 Exercises .. 31
2.7 Literature .. 34

3 Syntactic Analysis. 35
3.1 The Task of Syntactic Analysis .. 35
3.2 Foundations .. 37

3.2.1 Context-free Grammars .. 37
3.2.2 Productivity and Reachability of Nonterminals 42
3.2.3 Pushdown Automata 45
3.2.4 The Item-Pushdown Automaton to a Context-Free Grammar 47
3.2.5 first- andfollow-Sets 51
3.2.6 Der Spezialfallfirst1 andfollow1 . 57
3.2.7 Reine Vereinigungsprobleme .. 59

VI Contents

3.3 Top-down-Syntaxanalyse 61
3.3.1 Einf"uhrung .. 61
3.3.2 LL(k): Definition, Beispiele, Eigenschaften 63
3.3.3 Linksrekursion .. 67
3.3.4 Rechtsregul"are kontextfreie Grammatiken 69
3.3.5 StarkeLL(k)-Parser 73
3.3.6 Fehlerbehandlung inLL(k)-Parsern . 77

3.4 Bottom-up-Syntaxanalyse 85
3.4.1 Einf"uhrung .. 85
3.4.2 LR(k)-Analysatoren 86
3.4.3 LR(k): Definition, Eigenschaften, Beispiele 95
3.4.4 Fehlerbehandlung inLR-Parsern . 105

3.5 Literaturhinweise .. 109
3.6 "Ubungen .. 110

4 Semantic Analysis. 115
4.1 Aufgabe der semantischen Analyse 115

4.1.1 G"ultigkeits- und Sichtbarkeitsregeln 119
4.1.2 "Uberpr"ufung der Kontextbedingungen 123
4.1.3 "Uberladung von Bezeichnern .. 127

4.2 Typinferenz .. 130
4.3 Attributgrammatiken .. 149

4.3.1 Die Semantik einer Attributgrammatik 152
4.3.2 Einige Attributgrammatiken .. 153

4.4 Die Generierung von Attributauswertern 159
4.4.1 Bedarfsgetriebene Auswertung der Attribute 159
4.4.2 Statische Vorberechnungen für Attributauswerter . .. 160
4.4.3 Besuchsgesteuerte Attributauswertung 166
4.4.4 Parsergesteuerte Attributauswertung 170

4.5 "Ubungen .. 176
4.6 Literaturhinweise .. 177

Literatur .. 179

References. .. 179

1

The Structure of Compilers

Our series of books treats the compilation of higher programming languages into the machine lan-
guages of virtual or real computers. Such compilers are large, complex software systems. Realizing
large and complex software systems is a difficult task. What is special about compilers such that they
can be even implemented as a project accompanying a compilercourse? A decomposition of the task
into subtasks with clearly defined functionalities and clean interfaces between them makes this, in fact,
possible. This is true about compilers; there is a more or less standard conceptual compiler structure
composed of components solving a well-defined subtask of thecompilation task. The interfaces be-
tween the components are representations of the input program.

The compiler structure described in the following is aconceptualstructure. i.e. it identifies the
subtasks of the translation of asourcelanguage into atarget language and defines interfaces between
the components realizing the subtasks. The concrete architecture of the compiler is then derived from
this conceptual structure. Several components might be combined if the realized subtasks allow this.
But a component may also be split into several components if the realized subtask is very complex.

A first attempt to structure a compiler decomposes it into three components executing three consec-
utive phases:

1. Theanalysis phase, realized by theFrontend. It determines the syntactic structure of the source
program and checks whether the static semantic constraintsare satisfied. The latter contain the
type constraints in languages with static type systems.

2. Theoptimizationandtransformationphase, performed by what is often called theMiddleend. The
syntactically analysed and semantically checks program istransformed bysemantics-preserving
transformations. These transformations mostly aim at improving the efficiency of the program by
reducing the execution time, the memory consumption, or theconsumed energy. These transforma-
tions are independent of the target architecture and mostlyalso independent of the source language.

3. Thecode generation and the machine-dependent optimizationphase, performed by theBackend.
The program is being translated into an equivalent program in the target language. Machine-
dependent optimizations might be performed, which exploitpeculiarities of the target architecture.

This coarse compiler structure splits it into a first phase, which depends on the source language, a third
phase, which depends only on the target architecture, and a second phase, which is mostly independent
of both. This structure helps to adapt compiler components to new source languages and to new target
architectures.

The following sections present these phases in more detail,decompose them further, and show
them working on a small running example. This book describesthe analysis phase of the compiler.
The transformation phase is presented in much detail in the volume Analysis and Transformation.
The volumeCode Generation and Machine-oriented Optimizationcovers code generation for a target
machine.

2 1 The Structure of Compilers

1.1 Subtasks of compilation

Fig. 1.1 shows a conceptual compiler structure. Compilation is decomposed into a sequence of phases.
The analysis phase is further split into subtasks as this volume is concerned with the analysis phase.
Each component realizing such a subtask receives a representation of the program as input and delivers
another representation as output. The format of the output representation may be different, e.g. when
translating a symbol sequence into a tree, or it may be the same. In the latter case, the representation
will in general be augmented with newly computed information. The subtasks are represented by boxes
labeled with the name of the subtask and maybe with the name ofthe module realizing this subtask.

We now walk through the sequence of subtasks step by step, characterize their job, and describe the
change in program representation. As a running example we consider the following program fragment:

int a, b;

a = 42;

b = a ∗ a− 7;

where′ =′ denotes the assignment operator.

lexikalische Analyse

Scanner

Sieben

Sieber

syntaktische Analyse

Parser

semantische Analyse

Zielprogramm

Quellprogramm als Zeichenfolge

Symbolfolge

dekorierte Symbolfolge

Syntaxbaum

dekorierter Syntaxbaum

E
S
E
H
T
N
Y
S

N
A

Y
S
E

A

L

Optimierung

Codeerzeugung

Fig. 1.1. Structure of a compiler together with the program representations during the analysis phase.

1.2 Lexical Analysis

The component performing lexical analysis of source programs is often called thescanner. This com-
ponen reads the source program represented a sequence of characters mostly from a file. It decomposes
this sequence of characters into a sequence of lexical unitsof the programming language. These lexical
units are calledsymbols. Typial lexical units are keywords such asif , else, while or switch and spe-
cial charactes and character combinations such as=, ==, ! =, <=, >=, <, >, (,), [,], {, } or comma
and semicolon. These need to be recognized and converted into corresponding internal representations.
The same holds for reserved identifiers such as names of basictypes int, float, double, char, bool

or string, etc. Further symbols are identifier and constants. Examples for identifiers arevalue42, abc,

1.3 The Screener 3

Myclass, x, while the character sequences42, 3.14159 and′′HalloWorld!′′ represent constants. Some-
thing special to note is that there are, in principle, arbitrarily many such symbols. However, they can be
categorized into finitely manyclasses. A symbol class consists of symbols that are equivalent as far as
the syntactic structure of programs is concerned. Identifiers are an example of such a class. Within this
class, there may be subclasses such as type constructors in OCAML or variables in PROLOG, which are
written in capital letters. In the class of constants,int-constants can be distinguished from floating-point
constants andstring-constants.

The symbols we have considered so far bear semantic interpretations and need, therefore, be consid-
ered in code generation. However, there are symbols withoutsemantics. Two symbols need a separator
between them if their concatenation would also form a symbol. Such a separator can be a blank, a new-
line, or an indentation or a sequence of such characters. Such so-called white space can also be inserted
into a program to make visible the structure of the program.

Another type of symbols, without meaning for the compiler, but helpful for the human reader, are
comments and can be used by software development tools. A similar type of symbols arecompiler
directives(pragmas). Such directives may tell the compiler to include particular libraries or influence
the memory management for the program to be compiled.

The sequence of symbols for the example program might look asfollows:

Int(′′int ′′) Sep(′′ ′′) Id(′′a′′) Com(′′,′′) Sep(′′ ′′) Id(′′b′′) Sem(′′;′′) Sep(′′\n′′)

Id(′′a′′) Bec(′′=′′) Intconst(′′42′′) Sem(′′;′′) Sep(′′\n′′)

Id(′′b′′) Bec(′′=′′) Id(′′a′′) Mop(′′∗′′) Id(′′a′′) Aop(′′−′′) Intconst(′′7′′) Sem(′′;′′) Sep(′′\n′′)

To increase readability, the sequences was brolen into lines according to the original program structure.
Each symbol is represented with its symbol class and the substring representing it in the program. More
information may be added such as the position of the string inthe input.

1.3 The Screener

The scanner delivers a sequence of symbols to the screener. These are substrings of the program text
labeled with their symbol classes. It is the task of the screener to further process this sequence. Some
symbols it will eliminate since they have served their prupose as separators. Others it will transform into
a different representation. More precisely, it will perform the following actions, specific for different
symbol classes:

Reserved symbols:These are typically identifiers, but have a special meaning in the programming lan-
guage. e.g.begin, end, var, int etc.

Separators and comments:Sequences of blanks and newlines serve as separators between symbols.
They are of not needed for further processing of the program and can therefore be removed.. An
exception to this rule are some functional languages, e.g. HASKELL, where indentation is used to
express program nesting. Comments will also not be needed later and can be removed.

Pragmas: Compiler directives (pragmas) are not part of the program. They will separately passed on
to the copmpiler.

Other types of symbols are typically preserved, but their textual representation may be converted into
some more efficient internal representation.

Constants:The sequence of digits as representation of number constants is converted to a binary rep-
resentation.String-constants are stored into an allocated object. In JAVA implementations, these
objects are stored in a dedicated data structure, theString Pool. The String Pool is available to the
program at run-time.

Identifier: Compilers usually do not work with identifiers represented as string objects. This repre-
sentation would be too inefficient. Rather, identifiers are coded as unique numbers. The compiler
needs to be able to access the external representation of identifiers, though. For this purpose, the
identifiers are kept in a data structure, which can be efficiently addressed by their codes.

4 1 The Structure of Compilers

The screener will produce the following sequence of annotated symbols for our example program:

Int() Id(1) Com() Id(2) Sem()

Id(1) Bec() Intconst(42) Sem()

Id(2) Bec() Id(1) Mop(Mul) Id(1) Aop(Sub) Intconst(7) Sem()

All separators are removed from the symbol sequence. Semantical values were computed for some of
the substrings. The identifiersa andb were coded by the numbers 1 and 2, resp. The sequences of digits
for the int constants were replaced by their binary values. The internal representations of the symbols
Mop andAop are elements of an appropriate enumeration type.

Scanner and screener are usually combined into one module, which is also calledscanner. Concep-
tually, however, they should be kept separate. The task thatthe scanner, in the restricted meaning of
the word, performs can be realized by a finite-state machine.The screener, however, can be realized by
arbitrary pieces of code.

Id Bec AopIdCom SemSemIdInt SemId Bec Id IdMop

statlist

statlist

decl

stat

statlist

idlist

A

E

Intconst

F

T

type

stat

A

T

E

F

Intconst

T

F

E

T

Fidlist

Fig. 1.2. Syntactic analysis of the example program.

1.4 Syntactic Analysis

The lexical and the syntactic analysis together recognize the syntactic structure of the source program.
Lexical analysis realized the part of this task that can be realized by a finite-state machine. Syntactic
analysis recognizes the hierachical structure of the program, a task a finite-state machine can not do in
general. The syntactical structure of the program consistsof sequential and hierarchical composition of
language constructs. The hierarchical composition corresponds to thenestingof language constructs.
Programs in an object-oriented programming language like JAVA consist of class declarations, which
may be combined into packages. The declaration of a class maycontain declarations of attributes,
constructors, and methods. A method consists of a method head and a method body. The latter contains
the implementation of the method. Some language constructsmay be nested arbitrarily deep. This is
the case for arithmetic expressions, where an unlimited number of operators can be used to construct an
expression of arbitrary size and depth. Finite-state machines are incapable of recognizing such nesting
of constructs, and regular expressions are not expressive enough to describe it. We need to resort to
more powerful specification mechanisms and recognizers.

Pushdown automataare used as recognizers. The pushdown automaton used to recognize the syn-
tactic structure is calledparser. This component should not only recognize the syntactic structure of

1.6 Machine-Independent Optimization 5

correct programs. It should also be able to properly deal with syntactically incorrect programs. After
all, most programs submitted to a program contain mistakes.Typical syntax errors are spelling errors
in keyword, missing parentheses or separators. The parser should detect these kind of errors, diagnose
them, and maybe even try to correct them.

The syntactic structure of programs can be described bycontext-free grammars. From the theory of
formal languages and automata we know that pushdown automata are equivalent to context-free gram-
mars. Parsers are, therefore, deterministic pushdown automata. There exist many different methods for
syntactic analysis. The two major ones are described in Chapter 3.

The output of the parser may have several different equivalent formats. In our conceptual compiler
structure and in Fig. 1.2 (C), we use as outputparse trees.

1.5 Semantic Analysis

The job of semantic analysis is to determine properties and check conditions that are relevant for the
well-formedness of programs according to the rules of the programming language, but that go beyond
what can be described by context-free grammars. These conditions can be completely checked on the
basis of the program text are calledstatic semanticproperties. This phase is, therefore, called seman-
tic analysis. Thedynamicsemantics, in constrast, describes the behavior of programs when they are
executed. The atrtributesstaticanddynamicare associated with thecompile timeand therun timeof
programs, respectively. We list some static semantic properties of programs:

• type correctness in strongly typed programming languages like C, PASCAL, JAVA or OCAML . Nec-
essary for type correctness is that all identifiers are declared, either explicitily or implicitily and
possible the absence of multiple declarations of the same identifier.
• the existence of aconsistent type associationwith all expressions in languages with type polymor-

phism.

Example 1.5.1For the program of Example 1.2, semantic analysis will collect the declarations of the
decl-subtree in a map

env = {Id(1) 7→ Int, Id(2) 7→ Int}

. This map associates each identifier with its type. Using this map, semantic analysis can check in the
stat-subtrees whether variables and expressions are used in a type-correct way. For the first assignment,
a = 42;, it will check whether the left side of the assignment is a variable identifier, and whether
the type of the left side is compatible with the type on the right side. In the second assignement,
b = a ∗ a − 7;, the type of the right side is less obvious. It needs to be determined from the types of
the variablea and the constant7. One should not forget that the arithmetic operators areoverloadedin
most programming languges. This means that they stand for the designated operations of several types,
for instance onint- as well as onfloat-operands, possibly even for different precision. The typechecker
has to resolve overloading. In our example, it determines that the multiplication is anint-multiplication
and the subtraction anint-subtraction, both returning values of typeint . The result type of the right side
of the assignment, therefore, isint . ⊓⊔

1.6 Machine-Independent Optimization

Static analyses of the source program might detect potential run-time errors or possibilities for pro-
gram transformation that will increase the efficiency of theprogram while preserving the semantics of
the program. Adata-flow analysisor abstract interpretationcan detect, among others, the following
properties of a source program:

• There exists a program path on which a variable would be used without being initialized.
• There exist program parts that cannot be reached or functions that are never called. These superflu-

ous parts don’t need to be compiled.

6 1 The Structure of Compilers

• A program variablex at a statement in an imperative program has always the same value,c. In this
case, variablex can be repaced by the valuec in this statement.
This analysis would recognize that at each execution of the second assignment,b = a ∗ a − 7;,
variablea has the value42. Replacing both occurrences ofa by 42 leads to the expression42∗42−7,
whose value can be evaluated at compile time. This analysis and transformation is calledconstant
propagationwith constant folding.

A major empasis of this phase is on evaluating subexpressions whose value can be determined at com-
pile time. Besides this, the following optimizations can beperformed by the compiler:

• Loop invariantcomputations can be moved out of loops. A computation isloop invariant if it
only depends on variables that do not change their value during the execution of the loop. Such
a computation is executed only once instaed of in each iteration when it has been moved out of a
loop.
• A similar transformation can be applied in the compilation of functional programs to reach thefully

lazy-property. Expressions that only contain variables bound outside of the function can be moved
out of the body of the function and passed to the function in calls with an additional parameter.

These kinds of optimizations are performed by many compilers. They make up themiddle endof the
compiler. The volumeCompiler Design - Analysis and Transformationis dedicated to this subject area.

1.7 Memory Allocation

The allocation of memory and the assignment of addresses starts thesynthesis phaseof compilation.
This phase strongly depends on properties of the target architecture, such as word length, the address
length, the directly addressable units of the machine, and the existence or non-existence of instructions
for efficient direct access ton parts of directly addressable units. These machine parameters determine
the allocation of memory units to basic types and the possibility to pack values of “small”types such as
Booleans and characters, into bigger memory units. This memory-saving optimization needs to consider
the constraints for directly addressable units. For instance, int values can only be directly accessed or
operated upon on many machines when they are allocated at word borders. These constraints are called
alignmentrules.

Example 1.7.1 (see Fig. 1.3)We assume to have a machine with addressing of full words, that is,
consecutive words have addresses that differ by 1. The compiler allocatesint-variables to full words.
Increasing addresses in the order in which the variables aredeclared are assigned starting with address
0. Variablea is assigned address 0,b address 1. ⊓⊔

1.8 Generation of the Target Program

The code generator takes the intermediate representation of the program and generates the target pro-
gram. A systematic way to translate several types of programming languages to adequate virtual ma-
chines is presented in the volume,Compiler Design — Virtual Machines. Code generation, as described
there, works recursively over the structure of the program.It could, therefore, start directly after syn-
tactic and semantic analysis and work on the decorated parsetree.

The code generator uses the addresses assigned to variablesas described in the preceding step.
However, the access to values is more efficient if the values are stored in the registers of the machine.
Target machines have a limited number of such registers. Onetask of the code generator is to make
good use of this restricted resource. The task to assign registers to variables and intermediate values is
calledregister allocation.

Example 1.8.1Let us assume that a virtual or concrete target machine wouldhave registersr1, r2, . . . , rN

for a (mostly small)N and that it would have, among others, the instructions

1.8 Generation of the Target Program 7

Fig. 1.3.Analyse eines Programmausschnitts, (D) semantische Analyse, (E) Adre"szuordnung.

1

1

2

2

3

3

4 5

3

4

5

222

1

var

(id(1),(var,int))

(id(2),(var,int))

(id(1),(var,int,0))

(id(2),(var,int,0))

(var,int)

(var,int,0) (var,int,1)

(var,int) int int

addmulbecsembec id(1)id(1)id(1) id(2)id(1) com id(2) col semint

IDLIST

IDLIST

DECL

TYP F

T

E

ASSIGN

STAT

STATLIST

STATLIST

F F F

T T

T

E

E

ASSIGN

DECLIST

PROGRAM

int(”2”) int(”1”)

(C)

(D)

(E)

STAT

instruction meaning

load ri, q ri ←M [q];

store q, ri M [q]← ri;

loadi ri, q ri ← q;

subi ri, rj , q ri ← rj − q;

mul ri, rj , rk ri ← rj ∗ rk;

whereq stands for an arbitraryint-constant, andM [. . .] for a memory access. Let us further assume that
variablesa andb were assigned the global addresses1 and2. One potential translation of the example
program, which would store the values fora andb in the corresponding memeory cells, could look like
follows:

loadi r1, 42

store 1, r1

mul r2, r1, r1

subi r3, r2, 7

store 2, r3

Registersr1, r2 andr3 serve for to store intermediate values during the evaluation of right sides. Reg-
istersr1 andr3 hold the values of variablesa andb, resp. Closer inspection reveals that the compiler
could save registers. For instance, registerr1 can be reused for registerr2 since the value inr1 is no
longer needed after the multiplication. Evan the result of the instructionsubi may be stored in the same
register. We, thus, obtain the improved instructions sequence:

8 1 The Structure of Compilers

loadi r1, 42

store 1, r1

mul r1, r1, r1

subi r1, r1, 7

store 2, r1

⊓⊔

The code generator needs to observe limitations enforced bythe number of registers. It may not store
in registers more intermediate results concurrently than the number of registers allows. These and sim-
ilar constraints are to be found in realistic target architectures. Furthermore, they typically offer many
instruction that make special cases very efficient. This makes the generation of efficient code very diffi-
cult. The necessary techniques are presented in the volume:Compiler Design — Code Generation and
Machine-Level Optimization.

1.9 Specification and Generation of Compiler Components

The theory of formal languages and automata tells us that some analysis subtasks of compilation are
word problems of certain languages and that certain type of automata are acceptors for these languages
and, thus, solve these word problems. One also knows that these automata can be automatically gener-
ated from grammars that are used as specification mechanisms.

All the tasks that are to solved during the syntactic analysis can be elegantly specified by different
types of grammars. Symbols, the lexical units of the languages, can be described by regular expressions.

A non-deterministic finite-state machine recognizing the language described by a regular expression
can be automatically derived from the regular expression. This non-deterministic finite-state machine
can be automatically converted into a deterministic finite-state machine.

A similar correspondence is known between context-free grammars and pushdown automata. A
non-deterministic pushdown automaton recognizing the language of a context-free grammar can be au-
tomatically constructed from the context-free grammar. For practical applications such as compilation,
one prefers deterministic pushdown automata. However, unlike in the case of finite-state machines,
non-deterministic pushdown automata are more powerful than deterministic pushdown automata. Most
designers of programming languages have succeeded to stay within the class of deterministically an-
alyzable context-free languages, so that syntax analysis of their languages is relatively simple and ef-
ficient. The example of C++, however, shows that a badly designed syntax requires nondeterministic
parsers and considerably more effort, both in building a parser and in actually parsing programs in the
language.

The compiler components for lexical and syntactic analysis, thus, need not be programmed by
hand, but can be automatically generated from appropriate specifications. These two example suggest
to look for more compiler subtasks that could be solved by automatically generated components. As
another example for this approach, we meetattribute grammarsin this volume. These are an extension
of context-free grammars in which computations on parse trees can be specified. These computations
typically check the conformance of the program to static-semantics conditions like typing rules. Table
1.1 lists compiler subtasks treated in this volume that can be formally specified in such a way that
implementations of the corresponding components can be automatically generated. The specification
and the implementation mechanisms are listed with the subtask.

Program invariants as they are needed for the semantics-preserving application of optimizing pro-
gram transformations can be computed using generic approaches based on the theory ofabstract inter-
pretation. This is the subject of the volumeCompiler Design — Analysis and Transformation

There also exist methods to automatically produce components of the compiler backend. For in-
stance, instruction scheduling can be solved by ILP (Integer Linear Programming). All the subtasks of
code generation are treated in depth in the volumeCompiler Design – Code Generation and Machine-
Level Optimization

1.10 Literature 9

compilation subtask specification mechanism implementation mechanism

lexical analysis regular expressions deterministic

finite-state machines

syntactic analysis context-free grammars deterministic

pushdown automata

semantic analysis attribute grammars attribute evaluators

Table 1.1. Compiler subtasks, specification mechanisms, and corresponding implementation mechanisms

1.10 Literature

How to structure compilers was well understood rather early. The following articles may be taken as
witnesses [MD74], [McK74], and [GW75].

2

Lexical Analysis

We start this chapter with a description of the task of lexical analysis and then present regular expres-
sions as specification mechanism for this task. Regular expressions can be automatically converted into
non-deterministic finite state machines, which implement lexical analysis. Non-deterministic finite-
state machines can be made deterministic, which is preferred for implementing lexical analyzers, often
calledscanners. Another transformation on the resulting deterministic finite-state machines attempts to
reduce the size of the machines. These three steps together make up an automatic process generating
lexical analyzers from specifications. Another module working in close cooperation with such a finite-
state machine is thescreener. It filters out keywords, comments etc. and may do some bookkeeping.

2.1 The Task of Lexical Analysis

Let us assume that the source program is stored in a file. It consists of a sequence of characters. Lexical
analysis, i.e., the scanner, reads this sequence from left to right and decomposes it into a sequence
of lexical units, calledsymbols. Scanner, screnner, and parser may work in an integrated way. In this
case, the parser calls the combination scanner-screener toobtain the next symbol. The scanner starts
the analysis with the character that follows the end of the last found symbol. It searches for the longest
prefix of the remaining input that is a symbol of the language.It passes a representation of this symbol
on to the screener, which checks whether this symbol is relevant for the parser. If not it is ignored, and
the screener reactivates the scanner. Otherwise, it passesa possibly transformed representation of the
symbol on to the parser.

The scanner must, in general, be able to recognize infinitelymany or at least very many different
symbols. The set of symbols is, therefore, divided into finitely many classes. Onesymbol classwill
consist of symbols that have a similar syntactic role. We distinguish:

• The alphabet is the set of characters that may occur in program texts. We use the letterΣ to denote
alphabets.
• A symbolis a word over the alphabetΣ. Examples arexyz12, 125, class, “abc′′.
• A symbol classis a set of symbols. Examples are the set of identifiers, the set of int-constants, and

the set of character strings. We denote these byId, Intconst andString, respectively.
• The representation of a symbolcomprises all of the mentioned informations about a symbol that

may be relevant for later phases of compilation. The scannermight represent the wordxyz12
as pair(Id, “xyz12′′), consisting of the name of the class and the found symbol, andpass this
representation on to the screener. The screener could replace“xyz12′′ by the internal representation
of an identifier, for example, a unique number, and then pass this on to the parser.

12 2 Lexical Analysis

2.2 Regular Expressions and Finite-State Machines

2.2.1 Words and Languages

We introduce some basic terminology. We useΣ to denote somealphabet, that is a finite, non-empty
set of characters. Aword x overΣ of lengthn is a sequence ofn characters fromΣ. Theempty word
ε is the empty sequence of characters, i.e. the sequence of length 0. We consider individual characters
from Σ as words of length 1.

Σn denotes the set of words of lengthn for n ≥ 0. In particular,Σ0 = {ε} andΣ1 = Σ. The set
of all words is denoted asΣ∗. Correspondingly isΣ+ the set ofnon-emptywords, i.e.

Σ∗ =
⋃

n ≥ 0
Σn and Σ+ =

⋃

n ≥ 1
Σn.

Several words can be concatenated to a new word.Concatenationof the wordsx andy puts the se-
quence of characters ofy after the sequence of characters ofx, i.e.

x . y = x1 . . . xmy1 . . . yn,

if x = x1 . . . xm, y = y1 . . . yn for xi, yj ∈ Σ.
Concatenation ofx and y produces a word of lengthn + m if x and y have lengthn and m,

respectively. Concatenation is a binary operation on the set Σ∗. In contrast to the addition on numbers,
concatenation of words is notcommutative. This means that the wordx . y is , in general, different from
the wordy . x. Like the addition on numbers, concatenation of words isassociative, i.e.

x . (y . z) = (x . y) . z for all x, y, z ∈ Σ∗

The empty wordε is theneutralelement with respect to concatenation of words, i.e.

x . ε = ε . x = x for all x ∈ Σ∗.

In the following, we will writexy for x . y.

For a wordw = xy with x, y ∈ Σ∗ we callx a prefix andy a suffixof w. Prefixes and suffixes
are specialsubwords. In general, wordy is a subword of wordw, if w = xyz for wordsx, y ∈ Σ∗.
Prefixes, suffixes and, in general, subwords ofw are calledproper, if they are different fromw.

Subsets ofΣ∗ are called (formal)languages. We need some operations on languages. Assume that
L, L1, L2 ⊆ Σ∗ are languages. TheunionL1 ∪ L2 consists of all words fromL1 andL2:

L1 ∪ L2 = {w ∈ Σ∗ | w ∈ L1 oderw ∈ L2}.

TheconcatenationL1.L2 (abbreviatedL1L2) consists of all words resulting from concatenation of a
word fromL1 with a word fromL2:

L1 . L2 = {xy | x ∈ L1, y ∈ L2}.

ThecomplementL of languageL consists of all words inΣ∗ that are not contained inL:

L = Σ∗ − L.

For L ⊆ Σ∗ we denoteLn as then-times concatenation ofL, L∗ as the union of arbitrary concatena-
tions, andL+ as the union of non-empty concatenations ofL, i.e.

Ln = {w1 . . . wn | w1, . . . , wn ∈ L}

L∗ = {w1 . . . wn | ∃n ≥ 0. w1, . . . , wn ∈ L} =
⋃

n ≥ 0
Ln

L+ = {w1 . . . wn | ∃n > 0. w1, . . . , wn ∈ L} =
⋃

n ≥ 1
Ln

The operation(_)∗ is calledKleene-star.

2.2 Regular Expressions and Finite-State Machines 13

Regular Languages and Regular Expressions

The languages described by symbol classes as they are recognized by the scanner are non-emptyregular
languages.

Each non-empty regular language can be constructed starting with singleton languages and applying
the operations union, concatenation, and Kleene-Star.Formally, the set of allregular languagesover an
alphabetΣ is inductively defined by:

• The empty set∅ and the set{ε}, consisting only of the empty word, are regular .
• The sets{a} for all a ∈ Σ are regular overΣ.
• Are R1 andR2 regular languages overΣ, so areR1 ∪R2 andR1R2.
• Is R regular overΣ, then alsoR∗.

According to this definition, each regular language can be specified by a regular expression.Regular
expressionoverΣ and the regular languages described by them are also defined inductively:

• ∅ is a regular expression overΣ, which describes the regular language∅.
ε is a regular expression overΣ, and it describes the regular language{ε}.
• For eacha ∈ Σ is a a regular expression overΣ that describes the regular language{a}.
• Are r1 andr2 regular expressions overΣ that describe the regular languagesR1 andR2 respec-

tively, then(r1 | r2) and(r1r2) are regular expressions overΣ that describe the regular languages
R1 ∪R2 andR1R2, respectively.
• Is r a regular expression overΣ, that describes the regular languageR, thenr∗ is a regular expres-

sion overΣ that describes the regular languageR∗.

In practical applications,r? is often used as abbreviation for(r | ε) and sometimes alsor+ for the
expression(rr∗).

In the definition of regular expressions we assumed that the symbols for the empty set and the
empty word were not contained inΣ, similarly to the parentheses(,) and the operators| and∗ and
also?, +. These characters belong to the description mechanism for regular expressions and not to the
regular languages described by the the regular expressions. They are calledmeta charactersHowever,
the set of representable characters is limited, so that somemeta characters may also appear in the
described regular languages. A programming system generating scanners from descriptions given as
regular expressions needs to make clear when such a character is a meta character and when it is
a character of the language. One way to do this is ti useescape characters. In many specification
languages for regular languages the\ character is used as escape character. For example, to represent
the meta character| also as a character of the alphabet one would precede it with a\. So, in a regular
expression, the vertical bar would be represented as\|.

We introdce operator precedences to save on parentheses: The ?-operator has the highest prece-
dence, follwoed by the Kleene-star(_)∗, and then possibly the operator(_)+, then concatenation and
finally the alternative operator|.

Example 2.2.1The following table lists a number of regular expressions together with the languages
described by them, and some ot even all of their elements.

regular expressiondescribed languageelements of the language

a | b {a, b} a, b

ab∗a {a}{b}∗{a} aa, aba, abba, abbba, . . .

(ab)∗ {ab}∗ ε, ab, abab, . . .

abba {abba} abba ⊓⊔

Regular expressions that contain the empty set as symbol canbe simplified by repeated application of
the following equalities:

r | ∅ = ∅ | r = r

r . ∅ = ∅ . r = ∅

∅∗ = ǫ

14 2 Lexical Analysis

The equality symbol, ’=’, between two regular expressions means that both describe the same language.
We can prove:
Our applications only have regular expressions that describe non-empty languages. No symbol to de-
scribe the empty set is, therefore, needed. The empty word isneeded to represent empty alternatives.
The?-operator suffices to represent this. No extra representation of the empty word is needed.

Finite-State Machines

We have seen that regular expressions are used for the specification of symbol classes. The implemen-
tation of recognizers uses finite-state machines (FSMs). Finite-state machines are acceptors for regular
languages. They maintain one state variable that can only take on finitely many values, thestatesof
the finite-state machine. Fig. 2.1 shows that furthermore FSMs have an input tape and an input head,
which reads the input on the tape from left to right. The working of the FSM is described by atransition
relation∆.

Kontrolle

Zustand

Eingabeband

Fig. 2.1. Schematic representation of a finite-state machine.

Formally, we represent anon-deterministic finite-state machine (withε-transitions)(NFSM) as a
tupleM = (Q, Σ, ∆, q0, F) where

• Q is a finite set ofstates,
• Σ is a finite alphabet, theinput alphabet,
• q0 ∈ Q is theinitial state,
• F ⊆ Q is the set offinal states, and
• ∆ ⊆ Q× (Σ ∪ {ε})×Q is thetransition relation.

A transition (p, x, q) ∈ ∆ expresses thatM can change from its current statep into the stateq. Is
x ∈ Σ thenx must be the next character in the input and after readingx the input head if moved by one
character. Isx = ε then no character of the input is read upon this transition. The input head remains at
its actual position. Such a transition is called aε-transition.

Of particular interest for implementations are finite-state machines withoutε-transitions, which in
addition have in each state exactly one transition under each character. Such a finite-state machine
deterministic finite-state machine(DFSM). For such a DFSM the transition relation∆ is a Funktion
∆ : Q×Σ → Q.

We describe the workings of a DFSM in comparison with a DFSM used as a scanner. The descrip-
tion of the working of a scanner is put into boxes. A deterministic finite-state machine should check

whether given input words are contained in a language or not.It accepts the input word if it arrives in a
final state after reading the whole word.

2.2 Regular Expressions and Finite-State Machines 15

A deterministic finite-state machine used as a scanner decomposes the input word into a sequence of
subwords corresponding tosymbolsof the language. Each symbol drives the DFSM from its initial
state into one of its final states.

The deterministic finite-state machine starts in its initial state. Its input head is positioned at the begin-
ning of the input head.
A scanner’s input head is always positioned at the first not yet consumed character.

It then makes a numnber of steps. Depending on the actual state and the next input symbol the DFSM
changes its state and moves its input head to the next character. The DFSM accepts the input word when
the input is exhausted and the actual state is a final state.

Quite analogously, the scanner performs a number of steps. It reports that it has found a symbol or
that it has detected an error when no further step is possible.
If the actual state is not a final state and there is no transition under the next input character the scanner
returns to the last input character that brought it into a final state for some symbol class. It delivers as
value this class together with the newly consumed prefix of the input. Then the scanner restarts in the
initial state with its input head positioned at the first not yet consumed input character. The scanner
has detected an error if by rewinding the last transitions itdoes not find a final state.

Our goal is to derive an implementation of an acceptor of a regular language out of a specification
of the language, that is, to construct out of a regular expressionr a deterministic finite-state machine
that accepts the language described byr. In a first step, anon-deterministicfinite-state machine forr is
constructed that accepts the language described byr. In a second step this is made deterministic.

A finite-state machineM = (Q, Σ, ∆, q0, F) starts in its initial stateq0 and non-deterministically
performs a sequence of steps, acomputation, under the given input word The input word is accepted if
the computation leads to a final state,

The future behavior of a finite-state machine is fully determined by its actual stateq ∈ Q and the
remaining inputw ∈ Σ∗. This pair(q, w) makes up theconfigurationof the finite-state machine. A
pair (q0, w) is aninitial configuration. Pairs(q, ε) such thatq ∈ F arefinal configurations.

Thestep-relation ⊢
M

is a binary relation on configurations. Forq, p ∈ Q, a ∈ Σ∪{ε} andw ∈ Σ∗

holds (q, aw) ⊢
M

(p, w) if and only if (q, a, p) ∈ ∆ anda ∈ Σ ∪ {ε}. ⊢
∗

M
denotes the reflexive,

transitive hull of the relation⊢
M

. The language accepted by the finite-state machineM is defined as

L(M) = {w ∈ Σ∗|(q0, w) ⊢
∗

M
(qf , ε) with qf ∈ F}.

Example 2.2.2Table 2.1 shows the transition relation of a finite-state machine M in the form of a
two-dimensional matrixTM . The states of the FSM are denoted by the numbers0, . . . , 7. The alphabet
is the set{0, . . . , 9, ., E, +,−}. Each row of the table describes the transitions for one of the states of
the FSM. The columns correspond to the characters inΣ ∪ {ε}. The entryTM [q, x] contains the set of
statesp such that(q, x, p) ∈ ∆. The state0 is the initial state.{1, 4, 7} is the set of final states. This
FSM recognizes unsignedint- andfloat-constants. The accepting (final) state 1 can be reached through
computations onint-constants. Accepting states 4 and 6 can be reached underfloat-constants. ⊓⊔

A finite-state machineM can be graphically represented as a finitetransition diagram. A transition
diagram is a finite, directed, edge-labeled graph. The vertices of this graph correspond to the states
of M , the edges to the transitions ofM . An edge fromp to q that is labeled withx corresponds to
a transition(p, x, q). The start vertex of the transition diagram, correspondingto the initial state, is
marked by an arrow pointing to it. Theend vertices, corresponding to final states, are represented by
doubly encircled vertices. Aw-path in this graph for a wordw ∈ Σ∗ is a path from a vertexq to a
vertexp, such thatw is the concatenation of the edge labels. The language accepted byM consists of
all words inw ∈ Σ∗, for which there exists aw-Weg in the state diagram fromq0 to a vertexq ∈ F .

Example 2.2.3Fig. 2.2 shows the transition diagram corresponding to the finite-state machine of ex-
ample 2.2.2. ⊓⊔

16 2 Lexical Analysis

TM i . E +,− ε

0 {1,2} {3} ∅ ∅ ∅

1 {1} ∅ ∅ ∅ {4}

2 {2} {4} ∅ ∅ ∅

3 {4} ∅ ∅ ∅ ∅

4 {4} ∅ {5} ∅ {7}

5 ∅ ∅ ∅ {6} {6}

6 {7} ∅ ∅ ∅ ∅

7 {7} ∅ ∅ ∅ ∅

Table 2.1. The transition relation of a finite-state machine to recognize unsignedint- andfloat-constants. The first
column represents the identical columns for the digitsi = 0, . . . , 9, the fifth the ones for+ and−.

5 64 70

1

2

3

.

zi

zi

zi

zi

zi

zi

zi

zi

E

ε

.
+,−

E

.

Fig. 2.2. The transition diagram for the finite-state machine of Example 2.2.2. The characterzi stands for the set
{0, 1, . . . , 9}, an edge labeled withzi for edges labeled with0, 1, . . . 9 with the same source and target vertices.

Acceptors

The next theorem guarantees that a non-deterministic finite-state machine can be constructed for a
regular expression.

Theorem 2.2.1 For each regular expressionr over an alphabetΣ there exists a non-deterministic finite-
state machineMr with input alphabetΣ, such thatL(Mr) is the regular language described byr.

We now present a method that constructs the transition diagram of a non-deterministic finite-state ma-
chine for a regular expressionr over an alphabetΣ. . The construction starts with an edge leading from
the initial state to a final state. This edge is labeled withr.

q0 qf

r

r will be decomposed according to its syntactical structure,and in parallel the transition diagram is
built up. This is done by the rules of Fig. 2.3. They are applied until all remaining edges are labeled
with ∅, ε or characters fromΣ. Thenm, the edges labeled with∅ are removed.

The application of a rule replaces the edge whose label is matched by the label of the left side
by a corresponding copy of the subgraph of the right side. Exactly one rule is applicable for each
operator. The application of the rule removes an edge labeled with a regular expressionr and inserts
new edges that are labeled with the argument expressions of the outermost constructor inr. The rule for
the Kleene-star inserts additionalε-edges. This method can be implemented by the following program
snippet if we take natural numbers as states of the finite-state machine.

2.2 Regular Expressions and Finite-State Machines 17

q

q

q

q

q

q

p

p

p

p

p

p

q1

q1 q2

r2r1

ε
ε

εε
r

(K)

(A)

(S)

r1r2

r∗

r2

r1

r1|r2

Fig. 2.3. The rules for the construction of a finite-state machine for aregular expression.

trans ← ∅;

count ← 1;

generate(0, r, 1);

return (count , trans);

The settrans globally collects the transitions of the generated FSM, andthe global countercount keeps
track of the largest natural number used as state. A call to a proceduregenerate for (p, r′, q) inserts all
transitions of a finite-state machine for the regular expressionr′ with initial statep and final stateq into
the settrans. New states are created by incrementing the countercount . This procedure is recursively
defined over the structure of the regular expressionr′:

void generate (int p,Exp r′, int q) {

switch (r′) {

case (r1 | r2) : generate(p, r1, q);

generate(p, r2, q); return;

case (r1.r2) : int q1 ← ++count ;

generate(p, r1, q1);

generate(q1, r2, q); return;

case r∗1 : int q1 ← ++count ;

int q2 ← ++count ;

trans ← trans ∪ {(p, ε, q1), (q2, ε, q), (q2, ε, q1)}

generate(q1, r1, q2); return;

case ∅ : return;

case x : trans ← trans ∪ {(p, x, q)}; return;

}

}

Exp denotes the type ’regular expression’ over the alphabetΣ. We have used a JAVA -like program-
ming language as implementation language. Theswitch-statement was extended bypattern matching
to elegantly deal with structured data such as regular expressions. this means that patterns are not only
used to select between alternatives but also to identify partial structures.

A procedure callgenerate(0, r, 1) terminates aftern rule applications wheren is the number of
occurrences of operators and symbols in the regular expression r. If l is the value of the counter after
the call, the generated FSM has{0, . . . , l} as set of states, where 0 is the initial state and 1 the only
final state. The transitions are collected in the settrans. The FSMMr can be computed in linear time.

18 2 Lexical Analysis

Example 2.2.4The regular expressiona(a | 0)∗ over the alphabet{a, 0} describes the set of words
{a, 0}∗ beginning with ana. Fig. 2.4 shows the construction of the state diagram of a NFSthat accepts
this language.

⊓⊔

0 1

0

0

0

2

2

2

1

1

1

3 4

3 4

(S)

(K)

0 (A)

angewandte Regel

ε

ε

ε

a

ε ε

εεa

a

(a|0)

(a|0)∗

a(a|0)∗

a

ε

Fig. 2.4. Construction of a state diagram for the regular expressiona(a | 0)∗

The Subset Construction

For implementations,deterministicfinite-state machines are preferable to non-deterministicfinite-state
machines. A deterministic finite-state machineM has no transitions underε and for each pair(q, a)
with q ∈ Q anda ∈ Σ, it has exactly one successor state. So, for each stateq in M and each word
w ∈ Σ∗ it has exactly onew-path in the transition diagram ofM starting inq. If q is chosen as initial
state ofM thenw is in the language ofM if and only if this path leads to a final state ofM . Fortunately,
we have Theorem 2.2.2.

Theorem 2.2.2 For each non-deterministic finite-state machine one can construct a deterministic finite-
state machine that recognizes the same language.⊓⊔

Proof. The proof is constructive and provides the second step of thegeneration method for scanners.
It uses thesubset construction. LetM = (Q, Σ, ∆, q0, F) be an NFSM. Goal of the subset construction
is to construct a DFSMP(M) = (P(Q), Σ,P(∆),P(q0)P(F)) that recognizes the same language as
M . For a wordw ∈ Σ∗ let states(w) ⊆ Q be the set of all statesq ∈ Q for which there exists aw-path
leading from the initial stateq0 to q. The DFSMP(M) is given by:

P(Q) = {states(w) | w ∈ Σ∗}

P(q0) = states(ε)

P(F) = {states(w) | w ∈ L(M)}

P(∆)(S, a) = states(wa) for S ∈ P(Q) anda ∈ Σ if S = states(w)

We convince ourselves that our definition of the transition functionP(∆) is reasonable. To do this we
show that for wordsw, w′ ∈ Σ∗ with states(w) = states(w′) it holds thatstates(wa) = states(w′a)
for all a ∈ Σ. It follows in particular thatM andP(M) accept the same language.

2.2 Regular Expressions and Finite-State Machines 19

We need a systematic way to construct the states and the transitions ofP(M). The set of final states
of P(M) can be easily constructed if the set of states ofP(M) is known because it holds:

P(F) = {A ∈ P(M) | A ∩ F 6= ∅}

For a setA ⊆ Q we define the set ofε-successor statesA as

FZǫ(S) = {p ∈ Q | ∃ q ∈ S. (q, ε) ⊢
∗

M
(p, ε)}

This set consists of all states that can be reached from states in S by ε-paths in the transition diagram
of M . This closure can be computed by the following function:

set〈state〉 closure(set〈state〉 S) {

set〈state〉 result ← ∅;

list〈state〉 W ← list_of(S);

state q, q′;

while (W 6= []) {

q ← hd(W); W ← tl(W);

if (q 6∈ result) {

result ← result ∪ {q};

forall (q′ : (q, ε, q′) ∈ ∆)

W ← q′ :: W ;

}

}

return result ;

}

The states of the non-deterministic finite-state machine reachable fromA are collected In the setresult .
The listW contains all elements inresult whoseε-transitions are not yet processed. As long asW is
not empty, the first stateq from W is selected. To do this, functionshd andtl are used that return the
first element and the tail of a list, respectively. Isq already contained inresult nothing needs to be done.
Otherwise,q is inserted into the setresult . The all transitions(q, ε, q′) for q in ∆ are considered and
the successor statesq′ are added toW . By applying the closure operatorFZǫ(_), the initial stateP(q0)
of the subset automaton can be computed:

P(q0) = Sε = FZǫ({q0})

To construct the set of all statesP(M) together with the transition functionP(∆) of P(M), book-
keeping of the setQ′ ⊆ P(M) of already generated states and the set∆′ ⊆ P(∆) of already created
transitions is performed. Initially,Q′ = {P(q0)} and∆′ = ∅.

For a stateS ∈ Q′ and eacha ∈ Σ its successor stateS′ undera andQ′ and the transition(S, a, S′)
are added to∆. The successor stateS′ for S under a charactera ∈ Σ is obtained by collecting the
successor states of all statesq ∈ S undera and adding allε-successor states:

S′ = FZǫ({p ∈ Q | ∃q ∈ S : (q, a, p) ∈ ∆})

The functionnextState() serves to compute this set:

set〈state〉 nextState(set〈state〉 S, symbol x) {

set〈state〉 S′ ← ∅;

state q, q′;

forall (q′ : q ∈ S, (q, x, q′) ∈ ∆) S′ ← S′ ∪ {q′};

return closure(q′);

}

20 2 Lexical Analysis

The extensions ofQ′ and∆′ are performed until all successor states of the states inQ′ under characters
from Σ are already contained in the setQ′. Technically, this means that the set of all statesstatesand
the set of all transitionstrans of the subset automaton can be computed iteratively by the following
loop:

list〈set〈state〉〉 W ;

set〈state〉 S0 ← closure({q0});

states ← {S0}; W ← [S0];

trans ← ∅;

set〈state〉 S, S′;

while (W 6= []) {

q ← hd(W); W ← tl(W);

forall (x ∈ Σ) {

S′ ← nextState(S, x);

trans ← trans ∪ {(S, x, S′)};

if (S′ 6∈ states) {

states ← states ∪ {S′};

W ←W ∪ {S′};

}

}

}

⊓⊔

Example 2.2.5The subset construction, applied to the finite-state machine of Example 2.2.4 could be
executed by the steps described in Fig. 2.5. The states of theDFSM to be constructed are denoted by
primed natural numbers0′, 1′, The initial state0′ is the set{0}. The states inQ′ whose successor
states are already computed are underlined. The state3′ is the empty set of states, i.e. theerror state. It
can never be left.

It is the successor state of a stateq undera if there is no transition undera from q heraus. ⊓⊔

Minimization

The deterministic finite-state machines generated from regular expressions in the first two stepss are in
general not the smallest possible that would accept the given language. There might be states that have
the sameacceptance behavior. We say, statesp andq of a DFSM have the same acceptance behavior if
the DFSM goes fromp andq either under all input words into a final state or under all input words into
a non-final state. LetM = (Q, Σ, ∆, q0, F) be a deterministic finite-state machine. To formalize the
concept, same acceptance behavior, we extend the transition function∆ : Q × Σ → Q of the DFSM
M function∆∗ : Q × Σ∗ → Q that maps each pair(q, w) ∈ Q × Σ∗ to the unique state in which
ends thew-path fromq in the transition diagram ofM . The function∆∗ is defined inductively over the
length of words:

∆∗(q, ε) = q und ∆∗(q, aw) = ∆∗(∆(q, a), w)

for all q ∈ Q, w ∈ Σ∗ anda ∈ Σ. Statesp, q ∈ Q have the same acceptance behavior if

∆∗(p, w) ∈ F if and only if ∆∗(q, w) ∈ F

In this case we writep ∼M q. The relation∼M is an equivalence relation onQ. The DFSMM is called
minimal if the equivalence relation∼M is trivial, that is, there are no statesp 6= q in Q with p ∼M q.
For each DFSM a minimal DFSM can be constructed, which is evenunique up to isomorphism. This is
the claim of the following theorem.

2.2 Regular Expressions and Finite-State Machines 21

0′

0′

0′

0′

3′

3′

3′

3′

1′

1′

1′

1′ 2′

2′

2′

0′

0

0
0

0

0
0

a

1′

2′

1′ = {1, 2, 3}

2′ = {1, 3, 4}
0

0

a

a

a

a

a

a

a

0

0

ausge- neuesQ′ neuer (Teil-) DEA

a

Zustand
wählter

{0′, 1′, 2′, 3′}

{0′, 1′, 3′} mit

{0′, 1′, 2′, 3′} mit

{0′, 1′, 2′, 3′}

3′

a

Fig. 2.5. The subset construction for the NFSM of Example 2.2.4

Theorem 2.2.3 For each deterministic finite-state machineM , a minimal deterministic finite-state ma-
chineM ′ can be constructed that accepts the same language asM . This minimal deterministic finite-
state machine is unique up to renaming of states.

Proof. For a deterministic finite-state machineM = (Q, Σ, ∆, q0, F) we define a deterministic
finite-state machineM ′ = (Q′, Σ, ∆′, q′0, F

′) that is minimal. As set of states of the deterministic
finite-state machineM ′ we choose the set of equivalence classes of states of the DFSMM under∼M .
For a stateq ∈ Q let [q]M be the equivalence class of state sq with respect to the relation∼M , i.e.

[q]M = {p ∈ Q | q ∼M p}

The set of states ofM ′ is given by:
Q′ = {[q]M | q ∈ Q}

Correspondingly, the initial state and the set of final states ofM ′ are defined by

q′0 = [q0]M F ′ = {[q]M | q ∈ F},

and the transition function ofM for q′ ∈ Q′ anda ∈ Σ is defined by

∆′(q′, a) = [∆(q, a)]M for a q ∈ Q such thatq′ = [q]M .

One convinces oneself that the new transition function∆′ is well-defined, i.e. that for[q1]M = [q2]M
it holds[∆(q1, a)]M = [∆(q2, a)]M for all a ∈ Σ. Furthermore, one shows that

∆∗(q, w) ∈ F if and only if (∆′)∗([q]M , a) ∈ F ′

22 2 Lexical Analysis

holds for all q ∈ Q and w ∈ Σ∗. This implies thatL(M) = L(M ′). We claim that the DFSM
M ′ is minimal. To show this we assume there were still states[q1]M 6= [q2]M in M ′ that had the
same acceptance behavior inM ′. This would mean that(∆′)∗([q1]M , w) ∈ F ′ holds if and only if
(∆′)∗([q2]M , w) ∈ F ′. But then also holds∆∗(q1, w) ∈ F if and only if ∆∗(q2, w) ∈ F . Therefore,q1

andq2 would have the same acceptance behavior inM , i.e.q1 ∼M q2. But since∼M is an equivalence
relation this means that[q1]M = [q2]M , which is a contradiction to our assumption.⊓⊔

We conclude thatM ′ is indeed the desired minimal deterministic finites-state machine. The practi-
cal construction ofM ′ requires to compute the equivalence classes[q]M of the relation∼M .

Wereeachstate a final state, i.e.Q = F then all states were equivalent, andQ = [q0]M were the
only state ofM ′.

Let us assume in the following that not every state is a final state, i.e.Q 6= F . The algorithm
manages apartition Π on the setQ of the states of the DFSMM . A partition on the setQ is a set of
non-empty subsets ofQ, whose union isQ.

A partitionΠ is calledstableunder the transition relation∆, if for all q′ ∈ Π and alla ∈ Σ there
is ap′ ∈ Π such that

{∆(q, a) | q ∈ q′} ⊆ p′

In a stable partition, all transitions from one set of the partition lead into exactly one set of the partition.
In the partitionΠ , the sets of states are managed of which we assume that they have the same

acceptance behavior. If it turns out that a setq′ ∈ Π contains states with different acceptance behavior
then the setq′ is split up. Different acceptance behavior of two statesq1 andq2 is recognized when the
successor states∆(q1, a) and∆(q2, a) for aa ∈ Σ lie in different sets ofΠ . The partition is apparently
not stable. Such a split of a set in a partition is calledrefinementof Π . The successive refinement of the
partitionΠ terminates if there is no need for further splitting of any set in the obtained partition.Π is
stable under the transition relation∆.

The construction of the minimal deterministic finite-statemachine proceeds as follows: The parti-
tion Π is initialized withΠ = {F, Q\F}. Let us assume that the actual partitionΠ of the setQ of
states ofM ′ is not yet stable under∆. Then there exists a setq′ ∈ Π and aa ∈ Σ such that the set
{∆(q, a) | q ∈ q′} is not completely contained in any of the sets inp′ ∈ Π . Such a setq′ is then split
to obtain a new partitionΠ ′ that consists of all non-empty elements of the set

{{q ∈ q′ | ∆(q, a) ∈ p′} | p′ ∈ Π}

The partitionΠ ′ of q′ consists of all non-empty subsets of states fromq′ that lead undera into the same
sets inp′ ∈ Π . The setq′ in Π is replaced by the partitionΠ ′ of q′, i.e. the partitionΠ is refined to the
partition(Π\{q′}) ∪Π ′.

If a sequence of such refinement steps arrives at a stable partition in Π the set of states ofM ′ has
been computed.

Π = {[q]M | q ∈ Q}

Each refinement step increases the number of sets in partition Π . A partition of the setQ may only
have as many sets asQ has elements. Therefore, the algorithm terminates after finitely many steps. The
proof that the minimal DFSM is unique up to renaming of statesis the subject of Exercise 9.⊓⊔

Example 2.2.6We illustrate the presented method by minimizing the deterministic finite-state machine
of Example 2.2.5. At the beginning, partitionΠ is given by

{ {0′, 3′}, {1′, 2′} }

This Partition is not stable. The first set{0′, 3′}must be split into the partitionΠ ′ = {{0′}, {3′}}. The
coreresponding refinement of partitionΠ produces the partition

{{0′}, {3′}, {1′, 2′} }

This partition is stable under∆. It therefore delivers the states of the minimal deterministic finite-state
machine. The transition diagram of the so constructed deterministic finite-state machine is shown in
Fig. 2.6. ⊓⊔

2.3 Language for the Specification of Lexical Analyzers 23

0′

3′

1′, 2′
a

a

0

a

ε

0

Fig. 2.6. The minimal deterministic finite-state machine of Example 2.2.6.

2.3 A Language for the Specification of Lexical Analyzers

We have met regular expressions as specifcation mechanism for symbol classes in lexical analysis. For
practical purposes, one often would like to have something more comfortable.

Example 2.3.1The following regular expression describes the language ofunsignedint-constants of
Examples 2.2.2 and 2.2.3.

(0|1|2|3|4|5|6|7|8|9)(0|1|2|3|4|5|6|7|8|9)
∗

A similar specification offloat-constants would stretch over three lines.⊓⊔

In the following, we will present some extensions of the specfication mechanism that increase the
comfort, but not the expressive power of this mechanism. Theclass of languages that can be described
remains the same.

2.3.1 Character classes

In the specification of a lexical analyzer, one should be ableto group sets of characters intoclassesif
these characters can be exchanged against each other without changing the symbol class of symbols in
which they appear. This is particularly helpful in the case of large classes, for instance the class of all
Unicode-characters. Examples of frequently occurring character classes are:

bu = a− zA− Z

zi = 0− 9

The first wo definitions of character classes define classes byusing intervals in the underlying character
code, e.g. the ASCII. Note that we need another meta character, ’-’, for the specification of intervals.
Using this feature, we can nicely specify the symbol class ofidentifiers:

Id = bu(bu | zi)∗

The specification of character classes only uses three meta character, namely ’=’, ’−’, and the blank.

Example 2.3.2The regular expression for unsignedint- andfloat-constants is simplified through the
use of the character classeszi = 0− 9 to:

zi zi∗

zi zi∗E(+ | −)?zi zi∗ | zi∗(.zi | zi.)zi∗(E(+ | −)?zi zi∗)?

⊓⊔

24 2 Lexical Analysis

2.3.2 Non-recursive Parentheses

Programming languages have lexical units that are characterized by the enclosing parentheses. Exam-
ples are strings and comments. . Parentheses limiting comments can be composed of several characters:
(∗ and∗) or /∗ and∗/ or // and\n (newline). More or less arbitrary texts can be enclosed in the
opening and the closing parentheses. This is not easily described. A comfortable abbreviation for this
is:

r1 until r2

Let L1, L2 the languages described byr1 bzw. r2 whereL2 does not contain the empty word. The
language described by theuntil-expression is:

L1 Σ∗L2Σ∗ L2

A comment starting with// and ending at the end of line can be described by:

// until \n

2.4 Scanner Generation

Section 2.2 described methods to derive a non-deterministic finite-state machine from a regular ex-
pression, from this a deterministic finite-state machine, and finally a minimal deterministic finite-state
machine. In what follows we present the necessary extensionfor the practical generation of scanners
and screeners.

2.4.1 Character Classes

Character classes were introduced to simplify regular expressions. They may also lead to smaller finite-
state machines. The character-class definition

bu = a− z

zi = 0− 9

can be used to replace the 26 transitions between states under letters by one transition underbu. This
simplifies the FSM for the expression

Id = bu(bu | zi)∗

considerably. The implementation uses a mapχ that associates each charactera with its class or practi-
cally with a code for the class. This map is stored in an array indexed by the character codes. The array
components contain the code for the character class. In order for χ to be a function each character must
be member of exactly one character class. Character classesare implicitly introduced for characters that
don’t explicitly occur in a class and those that occur directly in a symbol-class definition. The problem
of non-disjoint character classes is resolved by refining the classes to become disjoint. Let us assume
that the classesz1, . . . , zk were specified. The generator introduces for each intersection z̃1 ∩ . . . ∩ z̃k

that is non-empty a new character class.z̃i either denoteszi or the complement ofzi. LetD be the set of
these newly introduced character classes. Each character classzi corresponds to one of the alternatives
di = (di1 | . . . | diri

) of character classes inD. Each occurrence of the character classzi in the regular
expression is then replaced bydi.

Example 2.4.1Let us assume we had introduced the two classes

bu = a− z

buzi = a− z0− 9

to define the symbol classesId = bu buzi∗. The generator would divide one of these character classes
into

zi′ = buzi\bu

bu′ = bu ∩ buzi = bu

The occurrence ofbuzi in the regular expression will be replaced by(bu′ | zi′). ⊓⊔

2.4 Scanner Generation 25

2.4.2 An Implementation of theuntil-Construct

Let us assume the scanner should recognize symbols whose symbol class is specified by the expression
r = r1 until r2. After recognizing a word of the language for "urr1 it needs to find a word of the
language forr2 and then halt. This task is a generalization of thepattern-matchingproblem on strings.
There exist algorithms for this problem that solve this problem for regular patterns in time, linear in the
length of the input. These are, for example, used in the UNIX -program EGREP. They construct a finite-
state machine for this task. One could solve the task presented above by starting such an automaton in
the final state of an automatonM1 that recognizes the language forr1. We will not do this, but present
an approach to construct such an automaton.

Let L1, L2 be the languages described by the expressionsr1 andr2. The languageL defined by the
expressionr1 until r2 is:

L = L1 Σ∗L2Σ∗ L2

The process starts with automata for the languagesL1 and L2, decomposes the regular expression
describing the language, and applies standard constructions for automata. The process has the following
seven steps: Fig. 2.7 shows all seven steps for an example.

1. The first step constructs FSMsM1 andM2 for the regular expressionsr1, r2 whereL(M1) = L1

andL(M2) = L2. A copy of the FSM forM2 is needed for step 2 and one more in step 6.
2. A FSMM3 is constructed forΣ∗L2Σ

∗ using the first copy ofM2.

εε

Σ Σ

M2

The FSMM3 non-deterministically accepts all words overΣ that contain a subword fromL2.
3. The FSMM3 is transformed into a DFSMM4 by the subset construction.
4. A DFSMM5 is constructed that recognizes the language forΣ∗L2Σ∗. To achieve this, the set of

final states ofM4 is exchanged with the one of non-final states. Each state thatwas a final state is
now a non-final state and vice versa. In particular,M5 accepts the empty word since according to
our assumptionε 6∈ L2. Therefore, the initial state ofM5 also is a final state.

5. The DFSMM5 is transformed into a minimal DFSMM6. All final states ofM4 are equivalent and
dead since it is not possible to reach a final state ofM5 from any final states ofM4. This error state
is removed.

6. Using the FSMsM1, M2 for L1 andL2 andM6 a FSMM7 for the languageL1 Σ∗L2Σ∗ L2 is
constructed.

ε

ε
M2

εM1

M6

ε

From each final state ofM6 including the initial state ofM6, there is aε-transition to the initial
state ofM2. From there paths under all wordsw ∈ L2 lead into the final state ofM2, which is the
only final state ofM7.

7. The FSMM7 is converted into a DFSMM8 and possible minimized.

2.4.3 Sequences of regular expressions

Let a sequence
r0, . . . , rn−1

of regular expression be given for the symbol classes to be recognized by the scanner. A scanner rec-
ognizing the symbols in these classes can be generated in thefollowing steps:

26 2 Lexical Analysis

1 32

1 2 30 4

1 2

1 24 5 63

3 7

7

2,5,64,1,5

0,1,20,1

0,1,4

0,1,3,4 0,1,2,4

1,5

minimaler DEA fürΣ∗{xy}Σ∗

nach Beseitigung des Fehlerzustands

x y
NEA für {xy}

Σ

ε x y ε

Σ

NEA für

Σ∗{xy}Σ∗

DEA für

Σ\{x} x

Σ\{x}

x

x

Σ\{x}

Σ\{x, y}

y

Σ∗{xy}Σ∗y

x

xΣ\{x}

Σ\{x}

x

ε

z ε yxε
x

Σ\{x, y}

Σ\{x}

Σ\{x} x
Σ\{x, y}

yx

Σ\{z}

Σ

x
Σ

DEA für {z}Σ∗{xy}Σ∗{xy}

Σ\{x, y}

x

z

x

Σ\{x, y}

NEA für {z}Σ∗{xy}Σ∗{xy}

Fig. 2.7. The derivation of a DFSM forz until xy with x, y, z ∈ Σ.

1. In a first step, FSMsMi = (Qi, Σ, ∆i, q0,i, Fi) for the regular expressionsri are generated where
theQi should be pairwise disjoint.

2. The FSMsMi are combined into a FSMM = (Σ, Q, ∆, q0, F) iby adding a new initial stateq0

together withε-transitions to the initial statesq0,i of the FSMsMi. The FSMM , therefore, looks
as follows:

Q = {q0} ∪Q0 ∪ . . . ∪Qn−1 f"ur ein q0 6∈ Q0 ∪ . . . ∪Qn−1

F = F0 ∪ . . . ∪ Fn−1

∆ = {(q0, ε, q0,i) | 0 ≤ i ≤ n− 1} ∪∆0 ∪ . . . ∪∆n−1 .

The FSMM for the sequence accepts theunionof the languages that were accepted by the FSMs

2.4 Scanner Generation 27

Mi. The final state reached by a succesful run of the automaton indicates to which class the found
symbol belongs.

3. The subset construction is applied to the FSMM resulting in a determinstic finite-state machine
P(M). A wordw is associated with thei-th symbol class if it belongs to the language ofri, but to
no language of the other regular expressionsrj , j < i. Expressions with a smaller index are here
preferred over expressions with larger indices.
To which symbol class a wordw belongs can be computed by the DFSMP(M). The wordw
belongs to thei-th symbol class if and only if it drives the DFSMP(M) into a stateq′ ⊆ Q such
that

q′ ∩ Fi 6= ∅ und q′ ∩ Fj = ∅ f"ur alle j < i.

The set of all these statesq′ is denoted byF ′
i .

4. After this stp, one may minimized the DFSMP(M). During minimization, the sets of final states
F ′

i andF ′
j for i 6= j should be kept separate. The minimization algorithm should, therefore, start

with the initial partition

Π = {F ′
0, F

′
1, . . . , F

′
n−1,P(Q)\

n − 1⋃

i = 0
F ′

i }

.

Example 2.4.2Let the following sequence of character classes be given:

zi = 0− 9

hex = A− F

The sequence of regular definitions
zi zi∗

h(zi | hex)(zi | hex)∗

for the symbol classesIntconst andHexconst are processed in the following steps:

• FSMs are generated for these regular expressions.

i0 i1 i2 i3 i4

h0 h5h2 h4h3h1

ε

ε ε

εε

zi

ε

εεzi

zi

hex

zi

hexh

The final statei4 stands for symbols of the classIntconst, while the final stateh5 stands for symbols
of the classHexconst.
• The two FSMs are combined with a new initial stateq0:

h0

i0

q0

ε

ε

h

zi

28 2 Lexical Analysis

• The resulting FSM is then made deterministic:

2 3

0

1
.

hex

zizi

hex

zi

zi

h

An additional state 4 is needed, the error state corresponding to the empty set of original states.
This state and all transitions into it are left out in the transition diagramm in order to keep the
readability.
• Minimzation of the DFSM does not change it in this example.

The new final state of the generated DFSM contains the old finalstatei4 and, therefore, signals the
recoginition of symbols of symbol classIntconst. Final state 3 containsh5 and, therefore, signals the
symbol classHexconst.

Generated scanners always search for longest prefices of theremaining input that leads into a final
state. The scanner will, therefore, make a transition out ofstate 1 if this is possible, that is, if a digit
follows. If the next input character is not a digit, the scanner should return to state 1 and reset its reading
head. ⊓⊔

2.4.4 The Implementation of a Scanner

We have seen that the core of a scanner is a deterministic finte-state machine. The transition function of
this machine can be represented by a two-dimensional arraydelta. This array is indexed by the actual
state and the character class of the next input character. The selected array component contains the
new state into which the DFSM should go when reading this character in the actual state. States and
character classes are coded at non-negative integers. The access todelta[q, a] is usually fast. However,
the size of the arraydelta may be large. This DFSM often contains many transitions intothe error state
error. We, therefore, choose this state as thedefault valuefor the entries indelta. It then suffices to
only represent transitions into non-error states. This might lead to a sparsely populated array, whcih
can be compressed using well-known methods. These save muchspace at the cost of slightly increased
access time. It should not be forgotten that the now empty entries represent transitions into the error
state. These are still relevant for the scanners error-detecting capabilities. Thus, this information must
still be available.

Let us consider one such compression method. Instead of using the original arraydelta to represent
the transition function we represent it by an arrayRowPtr, which is indexed by states and whose
components are addresses of the original rows ofdelta, see Fig. 2.8.

Delta[q, a]

RowPtr

q

a

Fig. 2.8. Representation of the transition function of a DFSM.

2.5 The Screener 29

We haven’t won anything, yet, but even lost access efficiency. As said above, the rows ofdelta

to which entries inRowPtr point are often almost empty. The rows will, therefore, be overlaid into
a 1-dimensional arrayDelta in such a way that non-empty entries ofdelta do not collide. To find the
starting position for the next row to be inserted intoDelta one can use thefirst-fit-strategy. This row will
be shifted over the arrayDelta starting at its beginning, until no non-empty entries of this row collide
with non-empty entries already allocated inDelta.

The index inDelta at which theq-th row ofdelta is allocated is stored inRowPtr[q]. See Fig. 2.9.

RowPtr Delta

nichtleere Einträge für Zustandq

nichtleere Einträge für Zustandp

p

q

Zeile für Zustandp

Zeile für Zustandq

Fig. 2.9. Compressed representation of the transition function of a DFSM.

One problem is that the represented DFSM has lost its abilityto identify errors, that is, undefined
transitions. Let us consider an undefined entry∆(q, a), representing a transition into the error state.
However,Delta[RowPtr[q]+a] might contain a non-empty entry stemming from a shifted row of a state
p 6= q. Another 1-dimensional arrayValid is added, whcih has the same length asDelta. It contains the
information to which states the entries inDelta belong. This means thatValid[RowPtr[q] + a] = q if
and only if∆(q, a) is defined. The transition function of the deterministic finte-state machine can then
be implemented by a functionnext() as follows:

State next (State q, CharClass a) {

if (Valid[RowPtr[q] + a] 6= q) return error;

return Delta[RowPtr[q] + a];

}

2.5 The Screener

Scanners can be used in many applications, even beyond the pure splitting of a stream of characters
according to a specification by regular expressions. Hence,also scanner generators are useful to auto-
matically implement scanners. Scanner often can do more than splitting character streams, for instance
processing the tokens found in the stream.

To specify this extended functionality, each symbol class may have an associated semantic action.
A screener can, therefore, be specified as a sequence of pairsof the form

r0 {action0}

. . .

rn−1 {actionn−1}

30 2 Lexical Analysis

where theri are possibly extended regular expressions over character classes specifying thei-th symbol
class, and actioni denotes the semantic action to be executed when a symbol of this class is found.
The semanic actions are specified as code in a particular progamming language if the screener is to be
implemented in this programming language. Different languages offer different adequate ways to return
a representation of a found symbol. An implementation in C would, for instance, return anint-value
as code for a symbol class. All other concerned values are stored into global values. Somewhat more
comfort would be offered for an implementation of the screener in a modern object-oriented languages
such as JAVA . One could introduce a classToken whose subclassesCi would correspond to the symbol
classes. The last statement inactioni should be areturn-statement returning an object of classCi whose
attibutes would store all properties of the identified symbol. In a functional language such as OCAML ,
one could supply a data typetoken whose constructorsCi correspond to the different symbol classes.
The semantic action actioni is written in the form of an expression of typetoken whose valueCi(. . .)
represents the identified symbol of classCi.

Semantic actions often need to access the text of the actual symbol. Some generated scanners have
access to it in aglobalvariableyytext . Further global variables contain information such as the position
of the actual symbol in the input. These are important for thegeneration of meaningful error messages.
Some symbols should be ignored bu the screener. Instead of returning such a symbol to the parser the
scanner would be asked for the next symbol from the input. Forexample, a comment might have to be
skipped or a compiler directive might be realized and the next symbol be asked for. In a generator for
C oder JAVA no return-statement would terminate the semantic actions.

A functionyylex() is generatd from such a specification. It returns the next symbol every time it is
called. Let us assume a a functionscan() has been generated for the sequencer0, . . . , rn−1 of regular
expression. It would store the next symbol as a string in the global variableyytext and return the number
i of the class of ths symbol. The functionyylex() might then be

Token yylex() {

while(true)

switch scan() {

case 0 : action0; break;

. . .

case n− 1 : actionn−1; break;

default : return error();

}

}

The functionerror() handles the case that an error occurs while the scanner attempts to identify the next
symbol. If an actionactioni does not have areturn-statement the this action will resume execution at the
beginning of theswitch-statement and reads the next symbol in the remaining input.If if doess possess
a return-statement, executing it will terminate theswitch-statement, thewhile-loop and the actual call
of the functionyylex().

2.5.1 Scanner States

Sometimes it is useful to recognize different symbol classes depending on some context. Many scanner
generators produce scanners withscanner states. The scanner may pass from one state to another one
upon reading a symbol.

Example 2.5.1Skipping comments can be elegantly implemented using scanner states. For this pur-
pose, a distinction is made between a statenormal and a statecomment.

Symbols from symbol classes that are relevant for the semantics are processed in statenormal. An
additional symbol classCommentInit contains the start symbol of a comment, e.g./∗. The semantic
action triggered by recognizing the symbol/∗ switches to statecomment In statecomment, only the

2.6 Exercises 31

end symbol for comments,∗/, is recognized. All other input characters are skipped. Thesemantic
action triggered upon finding the end-comment symbol switches back to statenormal.

The actual scanner state can be kept in a global variableyystate. The assignmentyystate ← state

changes the state to the new statestate. The specification of a scanner possessing scanner states has the
form

A0 : class_list0

. . .

Ar−1 : class_listr−1

whereclass_list j is the sequence of regular expressions and semantic actionsfor stateAj . For the
statesnormal andcomment of Example 2.5.1 we get

normal :

/∗ { yystate ← comment; }

. . . // further symbol classes

comment :

∗/ { yystate ← normal; }

. { }

The character. stands for an arbitrary input symbol. Since none of the actions for start, content, or end
of comment has areturn-statement no symbol is returned for the whole comment.⊓⊔

Scanner states only influence the selection of symbol classes of which symbols are recognized. To
classify symbols according to scanner states the generation process of the functionyylex() can be
applied to the concatenation of the sequenceclass_list j . The only function that needs to be modified is
the functionscan(). To identify the next symbol this function has no longeronedeterministic finte-state
machine but a particular one,Mj, for each subsequenceclass_list j . Depending on the actual scanner
stateAj first the corresponding DFSMMj is selected and used for the identification of the next symbol.

2.5.2 Recognizing Reserved Words

Many possibilities exist for the distribution of duties between scanner and screener and for the func-
tionality of the screener. The advantages and disadvantages are not easily determined. One example for
two alternatives is the recognition of keywords. Accordingto the distribution of duties given in the last
chapter, the screener is in charge of recognizing reserved symbols (keywords). One possibility to do
this is to form an extra symbol class for each reserved word. Fig. 2.10 shows a finite-state machine that
recognizes several reserved words in its final states. Reserved keywords in C, JAVA and OCAML have
the same form as identifiers. An alternative to recognizing them in the final states of a DFSM is to let
the screener do it when it processes found identifiers.

The functionscan() will signal that an identifier has been found. The semantic action associated
with the symbol classidentifier will then check whether and if yes which keyword has been found.
This distribution of work between scanner and screener keeps the size of the DFSM small. On the other
hand, an efficient way to recognize keywords should be used.

Identifiers are often internally represented by uniqueINT-values. The screener typically uses a hash
table to compute this internal code. A hash table supports the efficient comparison of a newly found
identifier with identifiers that have already been entered before. The keywords should be entered into the
table before lexical analysis starts. The screener can thenidentify strings with the same effort necessary
for other identifiers.

2.6 Exercises

1. Kleene-Star
Let Σ be an alphabet andL, M ⊆ Σ∗. Show:

32 2 Lexical Analysis

23 24 25 26 27 28

18 2219 2120

15 16 17

11

9

14

10

12 13

6

0

7

21 3 4

8

5

3230 3129

i n t

e l s e

i f

ε

bu

εεε

of

t

n e w

c l a s s

zi

bu

l a t

s i n gr

Fig. 2.10. Finite-state machine for the recognition of identifiers andkeywordsclass, new, if, else, in, int, float,
string.

a) L ⊆ L∗.
b) ε ∈ L∗.
c) u, v ∈ L∗ impliesuv ∈ L∗.
d) L∗ is the smallest set with properties (1) - (3), that is, if a setM satisfies:

L ⊆M, ε ∈M and(u, v ∈M ⇒ uv ∈M) it follows L∗ ⊆M .
e) L ⊆M impliesL∗ ⊆M∗.
f) (L∗)∗ = L∗.

2. Symbol classes
FORTRAN provides the implicit declaration of identifiers accordingto their leading character. Iden-
tifiers beginning with one of the lettersi, j, k, l, m, n are taken asint-variables orint-function result.
All other identifiers denotefloat-variables.
Give a definition of the symbol classesFloatId andIntId.

3. Extended regular expressions
Extend the construction of finite-state machines for regular expressions from Fig. 2.3 in a way that
it processes regular expressionsr+ andr? directly.r+ stands forrr∗ andr? for (r | ε).

4. Extended regular expressions
Extend the construction of finite-state machines for regular expressions by a treatment ofcounting
iteration, that is, by regular expressions of the form:

r{u− o} at leastu and at mosto consecutive

instances ofr

r{u−} at leastu consecutive instances ofr

r{−o} at mosto consecutive instances ofr

5. Deterministic finite-state machines
Convert the finite-state machine of Fig. 2.10 into a deterministic finite-state machine.

2.6 Exercises 33

6. Sequences of regular definitions
Construct a deterministic finites-state machine for the sequence of regular definitions:

bu (bu | zi)∗

bu& (bu | zi)∗

bu bu& (bu | zi)∗

for symbol classesId, SysId andComId.

7. Character classes and symbol classes
Consider the following definitions of character classes:

bu = a− z

zi = 0− 9

bzi = 0 | 1

ozi = 0− 7

hzi = 0− 9 | A− F

and the definitions of symbol classes:

b bzi+

o ozi+

h hzi+

zi+

bu (bu | zi)∗

a) Give the partitioning of the character classes that a scanner generator would compute.
b) Describe the generated finite-state machine using these character classes.
c) Convert this finite-state machine into a deterministic one.

8. Reserved identifiers
Construct a deterministic finite-state machine for the finite-state machine of Fig. 2.10.

9. Uniqueness of minimal automata
Let M = (Q, Σ, ∆, q0, F) a minimal deterministic finite-state machine withL(M) = L. Let

M ′ = (Q′, Σ, ∆′, q′0, F
′) another minimal deterministic finite-state machine withL(M ′) = L.

Prove thatM andM ′ are identical up to the renaming of states.
Define a relation∼⊆ Q×Q′ with

q ∼ q′ falls (∀w ∈ Σ ∗ . ∆(q, w) ∈ F ⇔ ∆′(q′, w) ∈ F ′) .

Show that this relation relates each element ofQ to exactly one element inQ′. Show in particular
thatq0 ∼ q′0 holds. Derive the claim from this.

10. Table compression
Compress the table of the deterministic finite-state machine using the method of Section 2.2.

11. Processing of Roman numbers

a) Give a regular expression for Roman numbers.
b) Generate a deterministic finite-state machine from this regular expression.
c) Extend this finite-state machine such that it computes thedecimal value of a Roman number.

The finite-state machine can perform an assignment toonevariablew with each state transition.
The value is composed of the value ofw and of constants.w is initialized with 0. Give an
appropriate assignment for each state transition such thatw contains the value of the recognized
Roman number in each final state.

34 2 Lexical Analysis

12. Generation of a Scanner
Generate a OCAML -functionyylex from a scanner specification in OCAML .
Use wherever possible only functional constructs.

a) Write a functionskip that skips the recognized symbol.
b) Extend the generator by scanner states. Write a functionnext that receives the successor state

as argument.

2.7 Literature

The conceptual separation of scanner and screener was already proposed by F.L. DeRemer [DeR74].
Many so-called compiler generators support the generationof scanners from regular expressions. John-
son u.a. [JPAR68] describes such a system. The corresponding routine under UNIX , LEX, was realized
by M. Lesk [Les75]. FLEX was implemented by Vern Paxson. The approach described in this chapter
follows the scanner generator JFLEX for JAVA .

Compression methods for sparsely populated matrices as they generated in scanner and parser gen-
erators are described and analyzed in [TY79] and [DDH84].

