SSA Construction

Daniel Grund & Sebastian Hack

Saarland University

CC Winter Term 09/10

Overview

Intermediate Representations

Why?

How?

IR Concepts

Static Single Assignment Form

Introduction

Theory

Frontend

- Checks correctness of source code wrt. a given language definition
- Transforms (valid) source into the intermediate representation

Intermediate Representation (IR)

- Compiler internal data structures representing a program
- Uniform abstraction from source languages and target architectures
- $\Rightarrow n+m$ compiler components instead of $n \cdot m$ compilers
- Optimizations are performed on the IR

Backend

- Encapsulates all details of a target architecture
- Code generation
 - Instruction selection
 - Instruction scheduling
 - Register allocation

Overview

Intermediate Representations

Why?

How?

IR Concepts

Static Single Assignment Form

Introduction

Theory

Overview

Intermediate Representations

Why?

How?

IR Concepts

Static Single Assignment Form

Introduction

Theory

Motivating IRs

- Bridge the gap between abstract syntax tree and object code
- Provide data structures more suitable for analyses/optimizations
- Easier retargetability (reuse of IR for source-target pairs)
- Reuse of machine independent optimizations

Overview

Intermediate Representations

Why?

How?

IR Concepts

Static Single Assignment Form

Introduction

Theory

Design Issues

- Consider source language and target
- Consider (type) of planned optimizations
- Choose the right "level"
 - Higher level means closer to source
 - Lower level closer to target loses some structure/information
- Procedure cloning, inlining, and loop optimizations need structural high-level information
- Branch optimization, software pipelining, and register allocation need representation close to machine
- ⇒ Possibly multiple levels in one IR (same generic data structures). So called "lowering" transforms them from high to low.

Lowering

Typical constructs subject to lowering

- array accesses
- struct accesses
- calls (calling convention, ABI)
- instruction selection can be seen as lowering

```
t1 := j+2

t2 := 10 * i

t3 := t1 + t2

t1 := a[i,j+2]

t4 := 4 * t3

t5 := addr(a)

t6 := t4 + t5

t7 := *t6
```

Overview

Intermediate Representations

Why?

How?

IR Concepts

Static Single Assignment Form

Introduction

Theory

Different IR Concepts

Representation of control flow

- Control-flow graph (CFG)
- Basic Block Graph (BBG)

Representation of computation

- Triple code
- Expression trees
- Data dependence graphs

Control Flow Graph (CFG)

Definition

In a CFG there is 1:1 correspondence of nodes to statements/instructions. Edges represent possible control flow.

Basic Block Graph (BBG)

Definition

A basic block (BB) is a maximal sequence of statements/instructions such that if any is executed all are executed.

Definition

In a BBG nodes are BBs and control flow is represented only between basic blocks.

Inside a BB there are no control dependencies.

Remark: Most people call this CFG.

Triple Code and Expression Trees

Representation of computation/data flow.

What is inside the BBs?

- Triple code: List of elementary instructions (x = op a b)
- Expression trees: List of trees (x = a + b * c; y = call foo (3 * x);)

Data Dependence Graphs

- Nodes represent computation results (operators)
- Edges represent data dependencies (data flow)
- Problem with concept of variables (state)
- No problem with side-effect-free operators (functional programming)
- Suitable representation for SSA form

Overview

Intermediate Representations

Why?

How?

IR Concepts

Static Single Assignment Form

Introduction

Theory

Overview

Intermediate Representations

Why?

How?

IR Concepts

Static Single Assignment Form Introduction

Introduction

Theory

Motivation

Main goal:

- Make data-flow analyses more efficient
- Make optimizations more effective

Nice "side-effects":

- Some analyses/optimizations happen implicitly for free
- SSA-construction can implicitly perform CSE
- Use-Def chains are explicit in representation
- Def-Use chains are cheaper to represent

Definition

Static Single Assignment is a property of an IR regarding variables.

Definition

A program is in SSA form if every variable is statically assigned at most once. I.e. there are no two program locations assigning the same variable.

Intuition Behind Construction

- Replace concept of variable by concept of abstract values
- ▶ The entity statically referred to is a value
- For each assignment to a variable v a new abstract value v_i is defined v is replaced by $v_1, v_2, ...$
- For each use of v the definition v_i valid at that location is used instead

Merge Problem and Phi-Functions

- Problem: What to do when control flow merges?
- Here: Which c to use at the return?

Merge Problem and Phi-Functions

- Problem: What to do when control flow merges?
- ▶ Here: Which c to use at the return?
- ▶ Solution: Introduce pseudo operation, ϕ -functions
- $ightharpoonup \phi$ s select the correct value dependent on control flow

Overview

Intermediate Representations

Why?

How?

IR Concepts

Static Single Assignment Form

Introduction

Theory

Phi-Functions

- lacktriangledown ϕ s have as many operands as the corresponding BB has predecessors
- Each operand is uniquely associated with one of these predecessors
- ▶ The result of a ϕ is the operand associated to the predecessor through which the BB was reached
- \blacktriangleright ϕ s always are the first "instructions" in a BB
- \blacktriangleright all ϕ s in a BB must be evaluated simultaneously

Why Simultaneously? Swap Example

Why Simultaneously? Swap Example

Why Simultaneously? Swap Example

Dominance

Given a CFG with basic blocks X, Y, Z, and S, where S is the start block.

- ▶ Dominance: X ≥ Y Each path from S to Y goes through X
- Strict dominance: X > YX > Y if $X \ge Y \land X \ne Y$
- Dominance is a tree order
- ► Immediate dominator: idom(X)X = idom(Y) if $X > Y \land \exists Z : X > Z > Y$

SSA Program

A CFG is in SSA form iff

- every variable has exactly one program point where it is defined
- for every use of a variable x

$$\ell : \cdots \leftarrow \tau(\ldots, x, \ldots)$$

the definition of x either

- dominates ℓ if $\tau \neq \phi$
- ▶ dominates the *i*-th predecessor of ℓ if $\tau = \phi$ and x is the *i*-th argument

(Iterated) Join Points

- ▶ Consider two paths $p: p_1, ..., p_n, q: q_1, ..., q_m$ of nodes in the CFG
- ► Say p and q converge at z if

$$\exists k \leq n, l \leq m. (p_k = q_l = z) \land (\forall 1 \leq i < k, 1 \leq j < l. p_i \neq q_j)$$

Let $\mathcal{J}(x,y)$ be the set of convergence/join points of x and y:

$$\mathcal{J}(x,y) := \{z \mid \exists p. x \rightarrow^+ z, q : y \rightarrow^+ z. p, q \text{ converge at } z\}$$

• $\mathcal{J}(x,y)$ can be extended to sets of nodes:

$$\mathscr{J}(\{x_1,\ldots,x_n\}):=\bigcup_{1\leq i< j\leq n}\mathscr{J}(x_i,x_j)$$

- When putting a program to SSA form, ϕ -functions have to be inserted for a variable v at all $\mathscr{J}(defs(v))$
- ▶ But ϕ -functions constitute new definitions of SSA variables related to v
- ▶ Hence ¶ needs to be iterated:

$$\mathcal{J}^{1}(X) := \mathcal{J}(X)$$

$$\mathcal{J}^{i+1}(X) := \mathcal{J}(\mathcal{J}^{i}(X) \cup X)$$

$$\mathcal{J}^{+} := \mathcal{J}^{n} \text{ for } n > 1 \text{ and } \mathcal{J}^{n} = \mathcal{J}^{n+1}$$

Placement of Phi-Functions

Theorem (ϕ placement)

Given a non-SSA CFG and a variable x. Let defs(x) be the set of program points where x is defined. A correct SSA construction algorithm has to place a ϕ for x at all program points in

$$\mathscr{J}^+(defs(x)) \cap live(x)$$

Proof sketch:

- Let X and Y contain definitions of v and Z be a join point of two paths X →⁺ Z and Y →⁺ Z
- ϕ must not be placed after Z, e.g. in Z' with $Z \rightarrow^+ Z'$ Disambiguation of paths in a Z' would be impossible
- Iterated join points are necessary, since inserted ϕ s are new definitions of the variable

Overview

Intermediate Representations

Why?

How?

IR Concepts

Static Single Assignment Form

Introduction

Theory

- ▶ In the worst case each BB has a ϕ for each variable.
 - ► complexity $O(n^2)$
 - ► linear in practice
- ▶ Join criterion only says where to place ϕ s. What are the correct arguments?
- Idea by Click 1995:
 - don't compute join sets explicitly
 - perform global value numbering during construction
 - ▶ place \(\phi \) s on the fly

Value Numbering

- Find congruent variables
- Reuse instead of recomputation
- Two computations are congruent if
 - identical operators w/o side-effects (includes constants)
 - congruent operands
- Normalize expressions. More congruence detectable.
- In c = a+1 and d = 1+b
 c and d are congruent if a and b are congruent

SSA Construction with VN (1)

Starting point:

- AST or BBG
- w.l.o.g. computations are in form $x = \tau(y, z)$

Proceeding:

- ▶ in each BB store valid value number $VN(\tau, y, z)$ for each variable
 - store value number: setVN(x, vn)
 - get value number: getVN(x)
- ightharpoonup getVN(x) possibly inserts ϕ s if VN not defined in current BB

Nice:

 $ightharpoonup \phi$ s are only inserted if variable is live

SSA Construction with VN (2)

For each $x = \tau(y, z)$ do:

- ▶ getVN(y), getVN(z)
- ightharpoonup compute $VN(\tau, y, z)$
- if value number is new insert $VN(\tau, y, z) = \hat{\tau}(getVN(y), getVN(z))$ into the basic block
- ▶ store value number of x: setVN(x, VN(τ , y, z))

Nice:

computation of VN implicitly performs CSE

SSA Construction with VN (3)

Details of getVN(v):

- if value v_i is valid for variable v in current BB return v_i
- else if BB has exactly one predecessor call getVN(v) there
- else (more predecessors):
 - call getVN(v) for all predecessors
 - let the values $v_1, v_2, ...$ be the results
 - ▶ insert $VN(\phi, v, v) = \phi(v_1, v_2,...)$ into BB
 - avoid unnecessary φs
 - ▶ store new value of v: setVN(v, VN(ϕ , v, v))
 - return this new value

Unknown Predecessors: Problem

Observation: getVN might be undefined for some predecessors (loops!) Solution: Two-stage approach

- mark a BB as ready when it is in SSA form
- if all predecessors are ready proceed as described
- lacktriangle else insert ϕ' and remember operand for finishing later
- when marking a BB as ready check successors and possibly finish them

Unknown Predecessors: Example

Unknown Predecessors: Consequences

Consequence: Do construction in control-flow order (as much as possible)

- Use post-order of a reverse depth-first search
- keeps number of ϕ' s low
- dominating BBs are constructed before dominated BBs
- this makes the implicit CSE more effective

Larger Example

```
(1) a:=1;
                                                  (1) a := 1
 (2) b:=2;
                                                  (2) b := 2
     while (true) {
 (3) c := a + b;
                                                  (3)
                                                      c:=a+b
 (4) if (d:=c-a)
                                                  (4) d := c - a
 (5)
          while (d:=b*d) {
 (6)
             d:=a+b;
 (7)
                                 (5) d := b * d
             e := e+1;
 (8)
       b:=a+b;
                                 (6)
                                     d:=a+b
                                                  (6)
                                                      b := a + b
 (9)
       if (e:=c-a)
                                 (7) e := e+1
                                                      e:=c-a
          break;
                                                  (6)
                                                      a := b*d
(10) a := b * d;
                                                      b:=a-d
(11) b := a - d;
```


Get value number for a first places ϕ' for a

...then for *b* ...

 \dots and eventually a VN for c.

Inserting d := c - a works like normal value numbering.

Call to getVN(a) in 4 lead to recursive call getVN(a) in 3. This in turn produces a ϕ' for a in 3.

All predecessors of 3 are now in SSA form: ϕ s are placed. In block 2 a ϕ' is recursively placed for e.

getVN(a) in 5 recognizes copies, finds unique definition: no ϕ is necessary

All predecesors of 2 are now in SSA form: ϕ s are placed.

Algorithm recognices: e is uninitialized! Insert undefined value

 e_1

Recursive call to getVN(d) in 5 places complete ϕ function d_5

Optimization: Copy Propagation

Optimization: Constant Propagation

Optimization: Dead Code Elimination

Further Optimizations

- common subexpressions
- reassociation
- evaluation of constant expressions
- copy propagation
- dead code elimination

- 1. S. Muchnick: Advanced Compiler Design and Implementation (On IR issues and SSA)
- 2. C. Click et al.: His papers from 1995. Confer to DBLP

 (On practical SSA construction and an SSA-IR proposal)

www.libfirm.org (optimizing graph-based SSA IR)

- (On practical SSA construction and an SSA-IR proposal)3. R. Cytron et al.: An efficient method of computing SSA form
- (Original work on SSA. POPL 1989, similar article in TOPLAS 1991)