SSA Construction

Daniel Grund & Sebastian Hack

Saarland University

CC Winter Term 09/10

Outline

Overview

Frontend

| | Intermediate [|

Frontends L Backends

» Checks correctness of source code wrt. a given language definition

» Transforms (valid) source into the intermediate representation

Intermediate Representation (IR)

1 1
| w Intermediate ! !
: Representation | :

Frontends L Backends

» Compiler internal data structures representing a program
» Uniform abstraction from source languages and target architectures

= n-+ m compiler components instead of n- m compilers

» Optimizations are performed on the IR

Backend

Intermediate
Representation

Frontends

Backends

» Encapsulates all details of a target architecture

» Code generation
» Instruction selection
» Instruction scheduling
» Register allocation

Outline

Intermediate Representations
Why?
How?
IR Concepts

Outline

Intermediate Representations
Why?

Motivating IRs

v

Bridge the gap between abstract syntax tree and object code

v

Provide data structures more suitable for analyses/optimizations

v

Easier retargetability (reuse of IR for source-target pairs)

v

Reuse of machine independent optimizations

Outline

Intermediate Representations

How?

Design Issues

» Consider source language and target
» Consider (type) of planned optimizations

» Choose the right “level”

» Higher level means closer to source
> Lower level closer to target loses some structure/information

» Procedure cloning, inlining, and loop optimizations need structural
high-level information

» Branch optimization, software pipelining, and register allocation need
representation close to machine

= Possibly multiple levels in one IR (same generic data structures).
So called “lowering” transforms them from high to low.

Lowering

Typical constructs subject to lowering
> array accesses

» struct accesses

v

calls (calling convention, ABI)

» instruction selection can be seen as lowering
tl := j+2
t2 := 10 * i
t3 = tl + t2
tl = ali, j+2] td := 4 % t3
t5 := addr(a)
t6 := t4 + t5

t7 = xt6

Outline

Intermediate Representations

IR Concepts

Different IR Concepts

Representation of control flow
» Control-flow graph (CFG)
» Basic Block Graph (BBG)

Representation of computation
» Triple code
» Expression trees
» Data dependence graphs

Control Flow Graph (CFG)

Definition
In a CFG there is 1:1 correspondence of nodes to statements/instructions.
Edges represent possible control flow.

Basic Block Graph (BBG)

Definition
A basic block (BB) is a maximal sequence of statements/instructions
such that if any is executed all are executed.

Definition

In a BBG nodes are BBs and control flow is represented
only between basic blocks.

Inside a BB there are no control dependencies.

Remark: Most people call this CFG.

Triple Code and Expression Trees

Representation of computation/data flow.
What is inside the BBs?
» Triple code: List of elementary instructions
(x=o0pab)
» Expression trees: List of trees
(x=a+b*c;y=-callfoo (3 *x);)

Data Dependence Graphs

v

Nodes represent computation results (operators)

v

Edges represent data dependencies (data flow)

v

Problem with concept of variables (state)

v

No problem with side-effect-free operators (functional programming)

v

Suitable representation for SSA form

Outline

Static Single Assignment Form
Introduction
Theory
SSA Construction

Outline

Static Single Assignment Form
Introduction

Motivation

Main goal:
» Make data-flow analyses more efficient

» Make optimizations more effective

Nice “side-effects”:
» Some analyses/optimizations happen implicitly for free
» SSA-construction can implicitly perform CSE
» Use-Def chains are explicit in representation
» Def-Use chains are cheaper to represent

Definition

Static Single Assignment is a property of an IR regarding variables.
Definition

A program is in SSA form if every variable is statically assigned at most once.
l.e. there are no two program locations assigning the same variable.

Intuition Behind Construction

v

Replace concept of variable by concept of abstract values

v

The entity statically referred to is a value

v

For each assignment to a variable v a new abstract value v; is defined
vis replaced by vq,vs,...

v

For each use of v the definition v; valid at that location is used instead

Merge Problem and Phi-Functions

» Problem: What to do when control flow merges?
» Here: Which c to use at the return?

non-SSA

(a,b) = start
[
ifb<a
LN
c:=a-—b c:=0

return c

Merge Problem and Phi-Functions

» Problem: What to do when control flow merges?
» Here: Which c to use at the return?
» Solution: Introduce pseudo operation, ¢-functions

> ¢s select the correct value dependent on control flow

non-SSA SSA
(a,b) = start (a,b) = start
1 [
ifb<a ifb<a
7\ L N,
c:=a-—b c:=0 ci:=a—b>b c:=0
. e
C3 .= (P(C1,Cg)
!

return c

return c;

Outline

Static Single Assignment Form

Theory

Phi-Functions

v

¢s have as many operands as the corresponding BB has predecessors

v

Each operand is uniquely associated with one of these predecessors

v

The result of a ¢ is the operand associated to the predecessor
through which the BB was reached

v

¢s always are the first “instructions” in a BB

v

all ¢s in a BB must be evaluated simultaneously

Why Simultaneously? Swap Example

a = 23
b = 42
| —
t = a
a = b
b =t
call printf, str.a, b
L

Why Simultaneously? Swap Example

t
printf, str.a, b

I

a = 23
by = 42
| —
t = ¢(ana)
as ¢(b1 ’ b2)
b =t
call printf, str. ao, bo

]

Why Simultaneously? Swap Example

a
b
t
printf, str.a, b

ay
b

= 23
= 42

—

a

call

¢(ar,a)
¢ (b1,1)

printf, str. ao, t

I

I

Dominance

Given a CFG with basic blocks X, Y, Z, and S, where S is the start block.

» Dominance: X > Y
Each path from S to Y goes through X

» Strict dominance: X > Y
X>YiEX>YAXZEY

» Dominance is a tree order

» Immediate dominator: idom(X)
X=idom(Y)if X > YA BZ:X>2Z>Y

SSA Program

A CFG is in SSA form iff
» every variable has exactly one program point where it is defined

» for every use of a variable x
Coooie—=1()x,..0)

the definition of x either

» dominates £ if T # ¢
» dominates the i-th predecessor of £ if T = ¢ and x is the i-th argument

(Iterated) Join Points

» Consider two paths p: py,...,Pn, 9: 1, -..GQm of nodes in the CFG
» Say p and g converge at z if

Jk<nl<m(pk=q=2)ANV1<i<k1<j<lpi#q)
» Let #(x,y) be the set of convergence/join points of x and y:

F(x,y):={z|3p.x =" z,q: y =" z.p,q converge at z}
» _7(x,y) can be extended to sets of nodes:

Sl = S xx)
1<i<j<n

» When putting a program to SSA form, ¢-functions have to be inserted for
avariable v at all ¢ (defs(v))

» But ¢-functions constitute new definitions of SSA variables related to v

» Hence ¢ needs to be iterated:

S0 =)
%I—H(X) = /(/’(X)UX)
It = J"forn>1and g"= 7"

Placement of Phi-Functions

Theorem (¢ placement)

Given a non-SSA CFG and a variable x. Let defs(x) be the set of program
points where x is defined. A correct SSA construction algorithm has to place a
¢ for x at all program points in

7 " (defs(x)) N live(x)

Proof sketch:

» Let X and Y contain definitions of v and Z be a join point
of two paths X =T Zand Y =T Z

» ¢ can not be placed before Z

» ¢ must not be placed after Z, e.g. in Z’ with Z -+ Z’
Disambiguation of paths in a Z’ would be impossible

» lterated join points are necessary, since inserted ¢s are new definitions of
the variable

Outline

Static Single Assignment Form

SSA Construction

SSA Construction

» In the worst case each BB has a ¢ for each variable.
» complexity O(n?)
> linear in practice
» Join criterion only says where to place ¢s. What are the correct
arguments?
» Idea by Click 1995:

» don’t compute join sets explicitly
» perform global value numbering during construction
» place ¢s on the fly

Value Numbering

» Find congruent variables
» Reuse instead of recomputation
» Two computations are congruent if

» identical operators w/o side-effects (includes constants)
» congruent operands
» Normalize expressions. More congruence detectable.

» Inc=a+1andd=1+b
c and d are congruent if a and b are congruent

SSA Construction with VN (1)

Starting point:
» AST or BBG
» w.l.o.g. computations are in form x = t(y, z)

Proceeding:

» in each BB store valid value number VN(7, y, z) for each variable
» store value number: setVN(x, vn)
» get value number: getVN(x)

» getVN(x) possibly inserts ¢s if VN not defined in current BB
Nice:

> ¢@s are only inserted if variable is live

SSA Construction with VN (2)

For each x = 1(y, z) do:
> getVN(y), getVN(z)
» compute VN(z,y,2)

» if value number is new insert
VN(7,y,z) = T(getVN(y),getVN(z))
into the basic block

» store value number of x: setVN(x,VN(t,y, z))
Nice:
» computation of VN implicitly performs CSE

SSA Construction with VN (3)

Details of getVN(v):
» if value v; is valid for variable v in current BB return v;

» else if BB has exactly one predecessor call getVN(v) there
» else (more predecessors):

call getVN(v) for all predecessors

let the values vy, vs, ... be the results
insert VN(¢,v,v) = ¢(v1,vz,...) into BB
avoid unnecessary ¢s

store new value of v: setVN(v,VN(¢, v, v))
return this new value

Y vV vV VY VY

Unknown Predecessors: Problem

Observation: getVN might be undefined for some predecessors (loops!)
Solution: Two-stage approach

» mark a BB as ready when it is in SSA form

» if all predecessors are ready proceed as described

» else insert ¢’ and remember operand for finishing later

» when marking a BB as ready check successors and possibly finish them

Unknown Predecessors: Example

2, 8=
¢ nicht
berechen- v
bar a :=0'(a)

16st Fertig-
stellung

a,:=0"'(a) aus

Unknown Predecessors: Consequences

Consequence: Do construction in control-flow order (as much as possible)
» Use post-order of a reverse depth-first search
» keeps number of ¢'s low
» dominating BBs are constructed before dominated BBs
» this makes the implicit CSE more effective

Larger Example

(1) a:=1; (1) a:=1
(2) b:=2; (2) b:=2
while (true) { i
(3) c:=a+tb; 3) C':ajb
(4) if (Q::c—a) (4) d:=c-a

(5) while (d:=b=*d) {
(6) d:=a+b; v
(7) e:=e+l; (5) d:=b*d
}
(8) b:=a+b; l v
(9) if (e:=c-a) (6) d:=a+b (6) b:=a+b
. (7) e:=e+l (7) e:=c-a
} break; l
(10) a:=bxd; (6) a:=b*d
(11) b:=a-d; (7) b:=a-d

SSA Construction Block 1

GB, a,;:=1
b, :=2
v i
GB,
GB3
GB, ¢

SSA Construction Block 2

Get value number for
a first places ¢’ for a

GB

GB

GB

GB

a,:=¢'(a)

c:=a,+b

SSA Construction Block 2

...thenforb...

GB

GB

GB

SSA Construction Block 2

GB1 alzzl
b, =
v b
GB,
a,:=0"(a)
GB, b,:=0" (b)
c,:=a,tb,
...and eventually a
VN for c. B
5 A4
GB4 A4
s, |

SSA Construction Block 2

GB

GB
GB,

Inserting d = ¢ —

a works like normal

value numbering.
GB4 Y

a,;:=1

bl::2l
a,:=¢'(a)
bz::(i)'(b)
c,:1=a,thb,
d,:=c,-a,

GB. ¢

e, |

SSA Construction Block 3

GB, a,;:=1
b, :=2 i
GB
z a,:= '(a)
GB, 0,147 (b)
c,:1=a,thb,
d,:=c,-a,
b3::¢' (b)
d:=b,*d
GB. ¢
GB, ¢
—_—

SSA Construction Block 3

GB,

A 4

GB,

SSA Construction Block 3

v ¥

))zz
0 .Q.Qqm
= =% >
I
= @© O
e o
N &
=
m
O
273
T, >
= S Q
e o o
O a s g O

SSA Construction Block 4

GB, a;:=1
b, =
v v
GB,
a,:=¢"'(a)
. b,:=0" (b)
Call to getVN(a) in 4 GB, Cj::a2+b2
lead to recursive call b,:=¢" (b) d;:=c,-a,
getVN(a) in 3. d:=¢" (d)
This in turn produces Zj;;b3*(§2) GB, |
a ¢’ forain3.
GB4 Y

SSA Construction Block 4

v ¥

))22
T Q.Qq©
- =%
- - e

T TEER

s PRI

© Q 8 Qo U T

= ~

m m

0} [T}

GB,

A 4

GB,

1=a,tb,
e, 1

d,:
€,:=

SSA Construction Block 4

All predecessors of 3 GB,

are now in SSA form: D3:=b,
d,:=f(d,,d

¢s are placed. In a,:-a,

block 2 a ¢’ is recur- eji=0(e,,e,)

. = *

sively placed for e. d;:7b,7d,
GB4 Y
d,r=a;tb,
e,:1=e.+1

SSA Construction Block 5

. GB3
getVN(a) in 5 rec- -

. . . 3° 2
ognizes copies, finds d,:=¢(d,, d,)
unique definition: 83i7¢,

. e,i=(e,,e,)
no ¢ is necessary d,:=b,*d,
GB4 Y
d4 ::a3+b3
64 ::63+1

SSA Construction Block 5

GB, a,;:=1
b, :=2 i
GB,la,:=¢" (a)
b,:=¢" (b)
GB, e,:=0" (e)
b,:=b, c,:=a,*b,
d,:=0(d,,d,) d,:=c,-a,
a,:i=a,
e,:=0(e,,e,) GB, |
d,:=b,*d,
b.:=a, +b
GB4] 5 2 2
d,:=a,tb
4 3 3
e4::e3+1 GB6 l

SSA Construction Block 5

GBila, :
b, :
GB,la,:
b, :
GB, e,:
b,:=b, Ccl
d,: ¢(d d,) .
a,:=a,
e,i=0(e,,e,) GB
d,:=b.*d,
b, :
GB, €
d,:=a,+b
4 3 3
e4::e3+1 GB

SSA Construction Block 5

All predecesors of 2
are now in SSA form:
¢s are placed. GBs
b, :=b,
Algorithm recog- :i ;iz(dl o
nices: e,i=0(e,,e,)
e is uninitialized! In- | (%72
sert undefined value GB, |
&4 d,:=a,+b,
942:83+l
]

SSA Construction Block 6

Recursive call to
getVN(d) in 5 places
complete ¢ function
ds

o o

QN0 0 0O W

SSA Construction Block 6

Optimization: Copy Propagation

Optimization: Constant Propagation

Optimization: Dead Code Elimination

GB,
GB,
b,:=¢(2,b,)
GB, e,:=b (e, &)
c,:=1+b,
d,:=¢(d,,d,) | [

e,i=b(e,,e,)
d,:=b,*d

GB
d,:=1+Db,
e,i=e,+1

Further Optimizations

GB,
» common l [
subexpressions GB,
o b,:=0(2,c))
> reassociation e,:=h(e,d)
. GB, c. :=1+b
» evaluation of d b
1° 2
constant d,:=¢(b,, c,)
\ e,:=0(e,, e,)
expressions 3 2r e
P d;:=b,*d, GBs ¢
> Ccopy
propagation dy:=¢(d;, b,)
d d d GB4 Y
» dead code
L. . e4::e3+l GB l
elimination 6
a,:=c,*d,
b :=a,-d.

.- S. Muchnick: Advanced Compiler Design and Implementation
(On IR issues and SSA)

. C. Click et al.: His papers from 1995. Confer to DBLP
(On practical SSA construction and an SSA-IR proposal)

. R. Cytron et al.: An efficient method of computing SSA form
(Original work on SSA. POPL 1989, similar article in TOPLAS 1991)

. www.libfirm.org (optimizing graph-based SSA IR)

	Overview
	Intermediate Representations
	Why?
	How?
	IR Concepts

	Static Single Assignment Form
	Introduction
	Theory
	SSA Construction

	References

