
Reinhard Wilhelm + Helmut Seidl

The Translation of C

Saarbrücken + München

1

Structure of a compiler:

Program for

Frontend

Optimizations

Internal representation

(Syntax tree)

Internal representation

target machinegeneration

Code

Source program

2

Subtasks in code generation:

Goal is a good exploitation of the hardware resources:

1. Instruction Selection: Selection of efficient, semantically equivalent

instruction sequences;

2. Register Allocation: Best use of the available processor registers

3. Instruction Scheduling: Reordering of the instruction stream to exploit

intra-processor parallelism

For several reasons, e.g. modularization of code generation and portability, code

generation may be split into two phases:

3

abstract machine

abstract machine

code

Intermediate

representation
Code

generation

alternatively:

Input

code
Compiler

Interpreter

concrete machine

code

Output

4

Abstract machine

• idealized architecture,

• simple code generation,

• easily implemented on real hardware.

Advantages:

• Porting the compiler to a new target architecture is simpler,

• Modularization makes the compiler easier to modify,

• Translation of program constructs is separated from the exploitation of

architectural features.

5

Abstract machines for some programming languages:

Algol 60 → Algol Object Code

Pascal → P-machine

SmallTalk → Bytecode

Prolog → WAM (“Warren Abstract Machine”)

SML, Haskell → STGM

Java → JVM

6

The Translation of C

7

0 The Architecture of the CMa

• Each abstract machine provides a set of instructions

• Instructions are executed on the abstract hardware

• This abstract hardware can be viewed as a set of arrays and registers, which

the instructions access

• ... and which are managed by the run-time system

For the CMa we need:

8

The Data Store:

0 SP

S

• S is the (data) store, onto which new cells are allocated in a LIFO discipline

==⇒ Stack.

• SP (=̂ Stack Pointer) is a register, which contains the address (index) of the

topmost allocated cell,

Simplification: All types of scalar data fit into one cell of S.

9

The Code/Instruction Store:

0 1 PC

C

• C is the Code store, which contains the program.

Each cell of field C can store exactly one abstract instruction.

• PC (=̂ Program Counter) is a register, which contains the address (index) of

the instruction to be executed next.

• Initially, PC contains the address 0.

==⇒ C[0] contains the instruction to be executed first.

10

Execution of Programs: (the main cycle of the machine)

• The machine loads the instruction in C[PC] into a Instruction-Register IR

and executes it

• PC is incremented by 1 before the execution of the instruction

while (true) {

IR = C[PC]; PC++;

execute (IR);

}

• The execution of the instruction may overwrite the PC (jumps).

• The Main Cycle of the machine will be halted by executing the instruction

halt , which returns control to the environment, e.g. the operating system

• More instructions will be introduced by demand

11

1 Simple expressions and assignments

Problem: evaluate the expression (1 + 7) ∗ 3 !

More precisely: generate an instruction sequence, which

• determines the value of the expression and

• pushes it on top of the stack...

Idea:

• first compute the values of the subexpressions,

• save these values on top of the stack,

• then apply the operator, which leaves the result on top of the stack.

12

The general principle:

• instructions expect their (implicit) operands on top of the stack,

• execution of an instruction consumes its operands,

• results, if any, are stored on top of the stack.

q
loadc q

SP← SP + 1;

S[SP]← q;

Instruction loadc q needs no operand on top of the stack, pushes the

constant q onto the stack.

Note: the content of register SP is only implicitly represented, namely through

the height of the stack.

13

8
mul

3
24

SP← SP – 1;

S[SP]← S[SP] ∗ S[SP+1];

mul expects two operands on top of the stack, consumes both, and pushes

their product onto the stack.

... the other binary arithmetic and logical instructions, add, sub, div, mod,

and, or and xor, work analogously, as do the comparison instructions eq, neq,

le, leq, gr and geq.

14

Example: The operator leq

1

leq7
3

Remark: 0 represents false, all other integers true.

Unary operators neg and not consume one operand and produce one

result.

−88 neg

S[SP]← – S[SP];

15

Example: Code for 1 + 7:

loadc 1 loadc 7 add

Execution of this code sequence:

81
7
1loadc 1 loadc 7 add

16

Variables are associated with cells in S:

x:

z:
y:

Code generation will be described by some Translation Functions, code, codeL,

and codeR.

Arguments: A program construct and a function ρ. ρ delivers for each variable x

the relative address of x. ρ is called Address Environment.

17

Variables can be used in two different ways:

Example: x = y + 1

We are interested in the value of y, but in the address of x.

The syntactic position determines, whether the L-value or the R-value of a

variable is required.

L-value of x = address of x

R-value of x = content of x

codeR e ρ produces code to compute the R-value of e in the

address environment ρ

codeL e ρ analogously for the L-value

Note:

Not every expression has an L-value (Ex.: x + 1).

18

We define:

codeR (e1 + e2) ρ = codeR e1 ρ

codeR e2 ρ

add

... analogously for the other binary operators

codeR (−e) ρ = codeR e ρ

neg

... analogously for the other unary operators

codeR q ρ = loadc q

codeL x ρ = loadc (ρ x)

...

19

codeR x ρ = codeL x ρ

load

The instruction load loads the contents of the cell, whose address is on top of

the stack.

1313

load
13

S[SP]← S[S[SP]];

20

codeR (x = e) ρ = codeR e ρ

codeL x ρ

store

store writes the contents of the second topmost stack cell into the cell, whose

address in on top of the stack, and leaves the written value on top of the stack.

Note: this is different from the corresponding store–instruction of the

P–machine in Wilhelm/Maurer!

13 13

13
store

S[S[SP]]← S[SP-1];

SP← SP – 1;

21

Example: Code for e ≡ x = y− 1 with ρ = {x 7→ 4, y 7→ 7}.

codeR e ρ produces:

loadc 7

load

load 1

sub

loadc 4

store

Improvements:

Introduction of special instructions for frequently used instruction sequences,

e.g.,

loada q = loadc q

load

storea q = loadc q

store

22

2 Statements and Statement Sequences

Is e an expression, then e; is a statement.

Statements do not deliver a value. The contents of the SP before and after the

execution of the generated code must therefore be the same.

code e; ρ = codeR e ρ

pop

The instruction pop eliminates the top element of the stack.

1 pop

SP← SP – 1;

23

The code for a statement sequence is the concatenation of the code for the

statements of the sequence:

code (s ss) ρ = code s ρ

code ss ρ

code ε ρ = // empty sequence of instructions

24

3 Conditional and Iterative Statements

We need jumps to deviate from the serial execution of consecutive statements:

PC

jump A

A

PC

PC← A;

25

PC

jumpz A
1

PC

A

jumpz A
0

PC PC

if (S[SP] == 0) PC← A;

SP← SP – 1;

26

For ease of comprehension, we use symbolic jump targets. They will later be

replaced by absolute addresses.

Instead of absolute code addresses, one could generate relative addresses, i.e.,

relative to the actual PC.

Advantages:

• smaller addresses suffice most of the time;

• the code becomes relocatable, i.e., can be moved around in memory.

27

3.1 One-sided Conditional Statement

Let us first regard s ≡ if (e) s′.

Idea:

• Put code for the evaluation of e and s′ consecutively in the code store,

• Insert a conditional jump (jump on zero) in between.

28

code s ρ = codeR e ρ

jumpz A

code s′ ρ

A : . . .

R

jumpz

code for e

code for s’

29

3.2 Two-sided Conditional Statement

Let us now regard s ≡ if (e) s1 else s2. The same strategy yields:

code s ρ = codeR e ρ

jumpz A

code s1 ρ

jump B

A : code s2 ρ

B : . . .

code for eR

jump

jumpz

1

2
code for s

code for s

30

Example: Be ρ = {x 7→ 4, y 7→ 7} and

s ≡ if (x > y) (i)

x = x− y; (ii)

else y = y− x; (iii)

code s ρ produces:

loada 4 loada 4 A: loada 7

loada 7 loada 7 loada 4

gr sub sub

jumpz A storea 4 storea 7

pop pop

jump B B: . . .

(i) (ii) (iii)

31

3.3 while-Loops

Let us regard the loop s ≡ while (e) s′. We generate:

code s ρ =

A : codeR e ρ

jumpz B

code s′ ρ

jump A

B : . . .

jumpz

code for eR

jump

code for s’

32

Example: Be ρ = {a 7→ 7, b 7→ 8, c 7→ 9} and s the statement:

while (a > 0) {c = c + 1; a = a− b; }

code s ρ produces the sequence:

A: loada 7 loada 9 loada 7 B: . . .

loadc 0 loadc 1 loada 8

gr add sub

jumpz B storea 9 storea 7

pop pop

jump A

33

3.4 for-Loops

The for-loop s ≡ for (e1; e2; e3) s′ is equivalent to the statement sequence

e1; while (e2) {s′ e3; } – provided that s′ contains no continue-statement.

We therefore translate:

code s ρ = codeR e1

pop

A : codeR e2 ρ

jumpz B

code s′ ρ

codeR e3 ρ

pop

jump A

B : . . .

34

3.5 The switch-Statement

Idea:

• Multi-target branching in constant time!

• Use a jump table, which contains at its i-th position the jump to the

beginning of the i-th alternative.

• Realized by indexed jumps.

q jumpi B

B+q

PC PC

PC← B + S[SP];

SP← SP – 1;

35

Simplification:

We only regard switch-statements of the following form:

s ≡ switch (e) {

case 0: ss0 break;

case 1: ss1 break;
...

case k− 1: ssk−1 break;

default: ssk

}

s is then translated into the instruction sequence:

36

code s ρ = codeR e ρ C0: code ss0 ρ B: jump C0

check 0 k B jump D . . .

. . . jump Ck

Ck: code ssk ρ D: . . .

jump D

• The Macro check 0 k B checks, whether the R-value of e is in the interval

[0, k], and executes an indexed jump into the table B

• The jump table contains direct jumps to the respective alternatives.

• At the end of each alternative is an unconditional jump out of the

switch-statement.

37

check 0 k B = dup dup jumpi B

loadc 0 loadc k A: pop

geq le loadc k

jumpz A jumpz A jumpi B

• The R-value of e is still needed for indexing after the comparison. It is

therefore copied before the comparison.

• This is done by the instruction dup.

• The R-value of e is replaced by k before the indexed jump is executed if it is

less than 0 or greater than k.

38

3
dup

3
3

S[SP+1]← S[SP];

SP← SP + 1;

39

Note:

• The jump table could be placed directly after the code for the Macro check.

This would save a few unconditional jumps. However, it may require to

search the switch-statement twice.

• If the table starts with u instead of 0, we have to decrease the R-value of e by

u before using it as an index.

• If all potential values of e are definitely in the interval [0, k], the macro

check is not needed.

40

4 Storage Allocation for Variables

Goal:

Associate statically, i.e. at compile time, with each variable x a fixed (relative)

address ρ x

Assumptions:

• variables of basic types, e.g. int, . . . occupy one storage cell.

• variables are allocated in the store in the order, in which they are defined,

starting at address 1.

Consequently, we obtain for the definition d ≡ t1 x1; . . . tk xk ; (ti basic type)

the address environment ρ such that

ρ xi = i, i = 1, . . . , k

41

4.1 Arrays

A set of consecutive memory cells, of static size.

Access through integer indeces starting at 0.

Example: int a[11];

The array a consists of 11 components and therefore needs 11 cells.

ρ a is the address of the component a[0].

a[0]

a[10]

42

We need a function sizeof (notation: | · |), computing the space requirement of a

type:

|t| =





1 if t basic

k · |t′| if t ≡ t′[k]

Accordingly, we obtain for the definition d ≡ t1 x1; . . . tk xk;

ρ x1 = 1

ρ xi = ρ xi−1 + |ti−1| for i > 1

Since | · | can be computed at compile time, also ρ can be computed at compile

time.

43

Task:

Extend codeL and codeR to expressions with accesses to array components.

Be t[c] a; the definition of an array a.

To determine the start address of a component a[i] , we compute

ρ a + |t| ∗ (R-value of i).

In consequence:

codeL a[e] ρ = loadc (ρ a)

codeR e ρ

loadc |t|

mul

add

. . . or more general:

44

codeL e1[e2] ρ = codeR e1 ρ

codeR e2 ρ

loadc |t|

mul

add

Remark:

• In C, an array is a pointer. A defined array a is a pointer-constant, whose

R-value is the start address of the array.

• Formally, we define for an array e: codeR e ρ = codeL e ρ

• In C, the following are equivalent (as L-values):

2[a] a[2] ∗(a+ 2)

Normalization: Array names and expressions evaluating to arrays occur in front

of index brackets, index expressions inside the index brackets.

45

4.2 Structures (Records)

A set of named components of possibly different types.

Access through the component names (selectors).

Simplification:

Names of structure components are not used elsewhere.

Alternatively, one could manage a separate environment ρst for each

structure type st.

Be struct { int a; int b; } x; part of a declaration list.

• x has as relative address the address of the first cell allocated for the

structure.

• The components have addresses relative to the start address of the structure.

In the example, these are a 7→ 0, b 7→ 1.

46

Let t ≡ struct {t1 c1 ; . . . tk ck ; }. We have

|t| =
k

∑
i=1

|ti|

ρ c1 = 0 and

ρ ci = ρ ci−1 + |ti−1| for i > 1

We thus obtain:

codeL (e.c) ρ = codeL e ρ

loadc (ρ c)

add

47

Example:

Be struct { int a; int b; } x; such that ρ = {x 7→ 13, a 7→ 0, b 7→ 1}.

This yields:

codeL (x.b) ρ = loadc 13

loadc 1

add

48

5 Pointer and Dynamic Storage Management

Pointer allow the access to anonymous, dynamically generated objects, whose

life time is not subject to the LIFO-principle.

==⇒ We need another potentially unbounded storage area H – the Heap.

S H

MAX0

SP EP NP

NP =̂ New Pointer; points to the lowest occupied heap cell.

EP =̂ Extreme Pointer; points to the uppermost cell, to which SP can point

(during execution of the current function).

49

Idea:

• Stack and Heap grow towards each other in S, but must not collide. (Stack

Overflow).

• A collision may be caused by an increment of SP or a decrement of NP.

• EP saves us the check for collision at the stack operations.

• EP can be determined statically.

• The checks at heap allocations are still necessary.

50

What can we do with pointers (pointer values)?

• set a pointer to a storage cell,

• dereference a pointer, i.e. access the value in a storage cell pointed to by a

pointer.

There a two ways to set a pointer:

(1) A call malloc (e) reserves a heap area of the size of the value of e and

returns a pointer to this area:

codeR malloc (e) ρ = codeR e ρ

new

(2) The application of the address operator & to a variable returns a pointer

to this variable, i.e. its address (=̂ L-value). Therefore:

codeR (&e) ρ = codeL e ρ

51

n

NP

newn

NP

if (NP - S[SP] ≤ EP)

S[SP]← NULL;

else {

NP← NP - S[SP];

S[SP]← NP;

}

• NULL is a special pointer constant, identified with the integer constant 0.

• In the case of a collision of stack and heap the NULL-pointer is returned.

52

Dereferencing of Pointers:

The application of the operator ∗ to the expression e returns the contents of

the storage cell, whose address is the R-value of e:

codeL (∗e) ρ = codeR e ρ

Example: Given the definition

struct t { int a[7]; struct t ∗b; };

int i, j;

struct t ∗pt;

and the expression ((pt→ b)→ a)[i+ 1]

Because of e→ a ≡ (∗e).a holds:

codeL (e→ a) ρ = codeR e ρ

loadc (ρ a)

add

53

b:

a:

b:

a:pt:

j:

i:

54

Be ρ = {i 7→ 1, j 7→ 2, pt 7→ 3, a 7→ 0, b 7→ 7 }. Then:

codeL ((pt→ b)→ a)[i+ 1] ρ

= codeR ((pt→ b)→ a) ρ = codeR ((pt→ b)→ a) ρ

codeR (i + 1) ρ loada 1

loadc 1 loadc 1

mul add

add loadc 1

mul

add

55

For arrays, their R-value equals their L-value. Therefore:

codeR ((pt→ b)→ a) ρ = codeR (pt→ b) ρ = loada 3

loadc 0 loadc 7

add add

load

loadc 0

add

In total, we obtain the instruction sequence:

loada 3 load loada 1 loadc 1

loadc 7 loadc 0 loadc 1 mul

add add add add

56

6 Conclusion

We tabulate the cases of the translation of expressions:

codeL (e1[e2]) ρ = codeR e1 ρ

codeR e2 ρ

loadc |t|

mul

add if e1 has type t or t[]

codeL (e.a) ρ = codeL e ρ

loadc (ρ a)

add

57

codeL (∗e) ρ = codeR e ρ

codeL x ρ = loadc (ρ x)

codeR (&e) ρ = codeL e ρ

codeR e ρ = codeL e ρ if e is an array

codeR (e1 2 e2) ρ = codeR e1 ρ

codeR e2 ρ

op op instruction for operator ‘2’

58

codeR q ρ = loadc q q constant

codeR (e1 = e2) ρ = codeR e2 ρ

codeL e1 ρ

store

codeR e ρ = codeL e ρ

load otherwise

59

Example: int a[10], ∗b; with ρ = {a 7→ 7, b 7→ 17}.

Consider the statement: s1 ≡ ∗a = 5;

We then have:

codeL (∗a) ρ = codeR aρ = codeL aρ = loadc 7

code s1 ρ = loadc 5

loadc 7

store

pop

As an excercise translate:

s2 ≡ b = (&a) + 2; and s3 ≡ ∗(b + 3) = 5;

60

s2 ≡ b = (&a) + 2; and s3 ≡ ∗(b + 3) = 5;

code (s2 s3) ρ = loadc 7 loadc 5

loadc 2 loadc 17

loadc 1 // scaling load

mul loadc 3

add loadc 1 // scaling

loadc 17 mul

store add

pop // end of s2 store

pop // end of s3

61

7 Freeing Occupied Storage

Problems:

• The freed storage area is still referenced by other pointers (dangling

references).

• After several deallocations, the storage could look like this (fragmentation):

frei

62

Potential Solutions:

• Trust the programmer. Manage freed storage in a particular data structure

(free list) ==⇒ malloc or free may become expensive.

• Do nothing, i.e.:

code free (e); ρ = codeR e ρ

pop

==⇒ simple and (in general) efficient.

• Use an automatic, potentially “conservative” Garbage-Collection, which

occasionally collects certainly inaccessible heap space.

63

8 Functions

The definition of a function consists of

• a name, by which it can be called,

• a specification of the formal parameters;

• maybe a result type;

• a statement part, the body.

For C holds:

codeR f ρ = _ f = starting address of the code for f

==⇒ Function names must also be managed in the address environment!

64

Example:

int fac (int x) {

if (x ≤ 0) return 1;

else return x ∗ fac(x− 1);

}

main () {

int n;

n = fac(2) + fac(1);

printf (“%d”, n);

}

At any time during the execution, several instances of one function may exist,

i.e., may have started, but not finished execution.

An instance is created by a call to the function.

The recursion tree in the example:

main

printffacfac

fac fac

fac

65

We conclude:

The formal parameters and local variables of the different instances of the same

function must be kept separate.

Idea:

Allocate a special storage area for each instance of a function.

In sequential programming languages these storage areas can be managed on a

stack. They are therefore called Stack Frames.

66

8.1 Storage Organisation for Functions

FP

SP

PCold

FPold

EPold

return value

organisational

cells

formal parameters

local variables

FP =̂ Frame Pointer; points to the last organizational cell and is used to address

the formal parameters and the local variables.

67

The caller must be able to continue execution in its frame after the return from a

function. Therefore, at a function call the following values have to be saved into

organizational cells:

• the FP

• the continuation address after the call and

• the actual EP.

Simplification: The return value fits into one storage cell.

Translation tasks for functions:

• Generate code for the body!

• Generate code for calls!

68

8.2 Computing the Address Environment

We have to distinguish two different kinds of variables:

1. globals, which are defined externally to the functions;

2. locals/automatic (including formal parameters), which are defined

internally to the functions.

==⇒

The address environment ρ associates pairs (tag, a) ∈ {G, L}×N0 with their

names.

Note:

• There exist more refined notions of visibility of (the defining occurrences of)

variables, namely nested blocks.

• The translation of different program parts in general uses different address

environments!

69

Example (1):

0 int i;

struct list {

int info;

struct list ∗ next;

} ∗ l;

1 int ith (struct list ∗ x, int i) {

if (i ≤ 1) return x→info;

else return ith (x→next, i− 1);

}

2 main () {

int k;

scanf ("%d", &i);

scanlist (&l);

printf ("\n\t%d\n", ith (l,i));

}

address environment at 0

ρ0 : i 7→ (G, 1)

l 7→ (G, 2)

ith 7→ (G, _ith)

main 7→ (G, _main)

. . .

70

Example (2):

0 int i;

struct list {

int info;

struct list ∗ next;

} ∗ l;

1 int ith (struct list ∗ x, int i) {

if (i ≤ 1) return x→info;

else return ith (x→next, i− 1);

}

2 main () {

int k;

scanf ("%d", &i);

scanlist (&l);

printf ("\n\t%d\n", ith (l,i));

}

1 inside of ith:

ρ1 : i 7→ (L, 2)

x 7→ (L, 1)

l 7→ (G, 2)

ith 7→ (G, _ith)

main 7→ (G, _main)

. . .

71

Example (3):

0 int i;

struct list {

int info;

struct list ∗ next;

} ∗ l;

1 int ith (struct list ∗ x, int i) {

if (i ≤ 1) return x→info;

else return ith (x→next, i− 1);

}

2 main () {

int k;

scanf ("%d", &i);

scanlist (&l);

printf ("\n\t%d\n", ith (l,i));

}

2 inside of main:

ρ2 : i 7→ (G, 1)

l 7→ (G, 2)

k 7→ (L, 1)

ith 7→ (G, _ith)

main 7→ (G, _main)

. . .

72

8.3 Calling/Entering and Leaving Functions

Be f the actual function, the Caller, and let f call the function g, the Callee.

The code for a function call has to be distributed among the Caller and the

Callee:

The distribution depends on who has which information.

73

Actions upon calling/entering g:

1. Saving FP, EP
}

mark

2. Computing the actual parameters

3. Determining the start address of g

4. Setting the new FP

5. Saving PC and

jump to the beginning of g





call






available in f

6. Setting the new EP
}

enter

7. Allocating the local variables
}

alloc




 available in g

Actions upon leaving g:

1. Restoring the registers FP, EP, SP

2. Returning to the code of f, i.e. restoring the

PC





return

74

Altogether we generate for a call:

codeR g(e1, . . . , en) ρ = mark

codeR e1 ρ

. . .

codeR en ρ

codeR g ρ

call n

Note:

• Expressions occurring as actual parameters will be evaluated to their

R-value ==⇒ Call-by-Value-parameter passing.

• Function g can also be an expression, whose R-value is the start address of

the function to be called ...

75

• Function names are regarded as constant pointers to functions, similarly to

defined arrays. The R-value of such a pointer is the start address of the

function code.

• Note! For a variable int (∗)() g; , the two calls

(∗g)() and g()

are equivalent!

Normalization: Dereferencing of a function pointer are ignored.

• Structures are copied when they are passed as parameters.

In consequence:

codeR f ρ = ρ f f a function name

codeR (∗e) ρ = codeR e ρ e a function pointer

codeR e ρ = codeL e ρ

move k e a structure of size k

76

move k

k

for (i = k-1; i≥0; i--)

S[SP+i]← S[S[SP]+i];

SP← SP+k–1;

77

The instruction mark allocates space for the return value and for the

organizational cells and saves the FP and EP.

e

mark

e
FP
EP e

FP
EP

S[SP+2]← EP;

S[SP+3]← FP;

SP← SP + 4;

78

The instruction call n saves the continuation address and assigns FP, SP, and

PC their new values.

q

p

PC

FPcall n

PC

p

n

q

FP← SP - n - 1;

S[FP]← PC;

PC← S[SP];

SP← SP – 1;

79

Correspondingly, we translate a function definition:

code t f (specs){V_defs ss} ρ =

_f: enter q // Setting the EP

alloc k // Allocating the local variables

code ss ρf

return // leaving the function

where t = return type of f with |t| ≤ 1

q = maxS+ k wobei

maxS = maximal depth of the local stack

k = space for the local variables

ρf = address environment for f

// takes care of specs, V_defs and ρ

80

The instruction enter q sets EP to its new value. Program execution is

terminated if not enough space is available.

EP

enter q

q

EP← SP + q;

if (EP ≥ NP)

Error (“Stack Overflow”);

81

The instruction alloc k reserves stak space for the local variables.

alloc k

k

SP← SP + q;

82

The instruction return pops the actual stack frame, i.e., it restores the

registers PC, EP, SP, and FP and leaves the return value on top of the stack.

return

v v

p

e

p

eEP

PC
FP
EP

PC
FP

PC← S[FP]; EP← S[FP-2];

if (EP ≥ NP) Error (“Stack Overflow”);

SP← FP-3; FP← S[SP+2];

83

8.4 Access to Variables and Formal Parameters, and Return of

Values

The addressing of local variables and formal parameters is relative to the actual

FP.

We therefore modify codeL for the case of variable names.

For ρ x = (tag, j) we define

codeL x ρ =





loadc j tag = G

loadrc j tag = L

84

The instruction loadrc j computes the sum of FP and j.

FP
loadrc j

f+jffFP

SP← SP + 1;

S[SP]← FP+j;

85

As an optimization one introduces the instructions loadr j and storer j .

This is analogous to loada j and storea j.

loadr j = loadrc j

load

storer j = loadrc j

store

The code for return e; corresponds to an assigment to a variable with relative

address −3.

code return e; ρ = codeR e ρ

storer -3

return

86

Example: For the function

int fac (int x) {

if (x ≤ 0) return 1;

else return x ∗ fac (x− 1);

}

we generate:

_fac: enter q loadc 1 A: loadr 1 mul

alloc 0 storer -3 mark storer -3

loadr 1 return loadr 1 return

loadc 0 jump B loadc 1 B: return

leq sub

jumpz A loadc _fac

call 1

where ρfac : x 7→ (L, 1) and q = 1 + 4 + 2 = 7.

87

9 Translation of Whole Programs

The state before program execution starts:

SP← −1 FP← EP← 0 PC← 0 NP← MAX

Be p ≡ V_defs F_def1 . . . F_defn, a program, where F_defi defines a function

fi, of which one is named main.

The code for the program p consists of:

• Code for the function definitions F_defi;

• Code for allocating the global variables;

• Code for the call of main();

• the instruction halt.

88

We thus define for p ≡ V_defs F_def1 . . . F_defn:

code p ∅ = enter (k + 5) set EP

alloc k allocate global variables

mark create stack frame

loadc _main

call 0 call main

halt

_f1: code F_def1 ρ

...

_fn: code F_defn ρ

where ∅ =̂ empty address environment;

ρ =̂ global address environment;

k =̂ space for global variables

89

