
Grammar Flow Analysis

Grammar Flow Analysis

– Wilhelm/Maurer: Compiler Design, Chapter 8 –

Reinhard Wilhelm
Universität des Saarlandes
wilhelm@cs.uni-sb.de

2. November 2009

Grammar Flow Analysis

Notation

Generic names for

A,B ,C ,X ,Y ,Z Non-terminal symbols
a, b, c , . . . Terminal symbols
u, v ,w , x , y , z Terminal strings
α, β, γ, ϕ, ψ Strings over VN ∪ VT

p, p′, p1, p2, . . . Productions

◮ Standard notation for production
p = (X0 → u0X1u1 . . .Xnpunp)
np – Arity of p

◮ (p, i) – Position i in production p (0 ≤ i ≤ np)

◮ p[i] stands for Xi , (0 ≤ i ≤ np),

◮ X occurs at position i – p[i] = X

Grammar Flow Analysis

Reachability and Productivity

Non-terminal A is

reachable: iff there exist ϕ1, ϕ2 ∈ VT ∪ VN such that
S

∗
=⇒ ϕ1Aϕ2

productive: iff there exists w ∈ V ∗
T , A

∗
=⇒ w

These definitions are useless for tests;
they involve quantifications over infinite sets.

Grammar Flow Analysis

A two level Definition

1. A non-terminal is reachable through its occurrence (p, i) iff
p[0] is reachable,

2. A non-terminal is reachable iff it is reachable through at least
one of its occurrences,

3. S ′ is reachable.

1. A non-terminal A is productive through production p iff
A = p[0] and all non-terminals p[i](1 ≤ i ≤ np) are productive.

2. A non-terminal is productive iff it is productive through at
least one of its alternatives.

◮ Reachability and productivity for a grammar given by a
(recursive) system of equations.

◮ Least solution wanted to eliminate as many useless
non-terminals as possible.

Grammar Flow Analysis

Typical Two Level Simultaneous Recursion

Productivity: 1. dependence of property of left side non-terminal
on right side non-terminals,

2. combination of the information from the
different alternatives for a non-terminal.

Reachability: 1. dependence of property of occurrences of
non-terminals on the right side on the property
of the left side non-terminal,

2. combination of the information from the
different occurrences for a non-terminal,

3. the initial property.

In the specification

1. given by transfer functions

2. given by combination functions

Grammar Flow Analysis

Schema for the Computation

◮ Grammar Flow Analysis (GFA) computes a property
function I : VN → D

where D is some domain of information for non-terminals,
mostly properties of sets of trees,

◮ Productivity computed by a bottom-up Grammar Flow
Analysis (bottom-up GFA)

◮ Reachability computed by a top-down Grammar Flow
Analysis (top-down GFA)

Grammar Flow Analysis

Trees, Subtrees, Tree Fragments

X

Subtree upper treefragmentParse tree

X

for X for X

X

SS

X reachable: Set of upper tree fragments for X not empty,

X productive: Set of subtrees for X not empty.

Grammar Flow Analysis

Bottom-up GFA

Given a cfg G .
A bottom-up GFA-problem for G and a property function I :

D: a domain D↑,

T: transfer functions Fp↑: D↑np → D↑ for each p ∈ P ,

C: a combination function ∇↑: 2D↑ → D↑.

This defines a system of equations for G and I :

I (X)= ∇↑{Fp↑ (I (p[1]), . . . , I (p[np])) | p[0] = X} ∀X ∈ VN (I↑)

Grammar Flow Analysis

Top-down GFA

Given a cfg G .
A top down – GFA-problem for G and a property function I :

D: a domain D↓;

T: np transfer functions Fp,i↓: D↓ → D↓, 1 ≤ i ≤ np ,
for each production p ∈ P ,

C: a combination function ∇↓: 2D↓ → D↓,

S: a value I0 for S under the function I .

A top-down GFA-problem defines a system of equations for G and I

I (S) = I0
I (p, i)= Fp,i↓ (I (p[0])) for all p ∈ P , 1 ≤ i ≤ np

I (X) = ∇↓ {I (p, i) | p[i] = X}, for all X ∈ VN − {S}
(I↓)

Grammar Flow Analysis

Recursive System of Equations

Systems like (I↑) and (I↓) are in general recursive.
Questions: Do they have

◮ solutions?

◮ unique solutions?

Grammar Flow Analysis

They do have solutions if

◮ the domain
◮ is partially ordered by some relation ⊑,
◮ has a uniquely defined smallest element, ⊥,
◮ has a least upper bound, d1 ⊔ d2, for each two elements d1, d2

◮ and has only finitely ascending chains,

and

◮ the transfer and the combination functions are monotonic.

Our domains are finite, all functions are monotonic.

Grammar Flow Analysis

Fixpoint Iteration

◮ Solutions are fixpoints of a function
I : [VN → D] → [VN → D].

◮ Computed iteratively starting with ⊥⊥, the function which
maps all non-terminals to ⊥.

◮ Apply transfer functions and combination functions until
nothing changes.

We always compute least fixpoints.

Grammar Flow Analysis

Productivity Revisited

D↑ {false ⊑ true} true for productive
Fp↑

∧

(true for np = 0)
∇↑

∨

(false for non-terminals
without productions)

Domain: D↑ satisfies the conditions,

transfer functions: conjunctions are monotonic,

combination function: disjunction is monotonic.

Resulting system of equations:
Pr(X) =

∨

{
∧np

i=1
Pr(p[i]) | p[0] = X} for all X ∈ VN (Pr)

Grammar Flow Analysis

Example: Productivity

Given the following grammar:

G = ({S ′,S ,X ,Y ,Z}, {a, b},























S ′ → S

S → aX

X → bS | aYbY

Y → ba | aZ

Z → aZX























,S ′)

Resulting system of equations:

Pr(S) = Pr(X)
Pr(X) = Pr(S) ∨ Pr(Y)
Pr(Y) = true ∨ Pr(Z) = true

Pr(Z) = Pr(Z) ∧ Pr(X)

Fixpoint iteration
S X Y Z

false false false false

Grammar Flow Analysis

Reachability Revisited

D↓ false ⊑ {true} true for reachable
Fp,i↓ id identity mapping
∇↓

∨

Boolean Or (false, if there
is no occ. of the non-terminal)

I0 true

Domain: D↓ satisfies the conditions,

transfer functions: identity is monotonic,

combination function: disjunction is monotonic.

Resulting system of equations for reachability:
Re(S)= true

Re(X)=
∨

{Re(p[0]) | p[i] = X , 1 ≤ i ≤ np} ∀X 6= S
(Re)

Grammar Flow Analysis

Example: Reachability

Given the grammar G = ({S ,U,V ,X ,Y ,Z}, {a, b, c , d},































S → Y

Y → YZ | Ya | b

U → V

X → c

V → Vd | d

Z → ZX































,S)

The equations:

Re(S) = true

Re(U) = false

Re(V) = Re(U) ∨ Re(V)
Re(X) = Re(Z)
Re(Y) = Re(S) ∨ Re(Y)
Re(Z) = Re(Y) ∨ Re(Z)

Fixpoint iteration:
S U V X Y Z

true false false false false false

Grammar Flow Analysis

First and Follow Sets

Parser generators need precomputed information about sets of

◮ prefixes of words for non-terminals (words that can begin
words for non-terminals)

◮ followers of non-terminals (words which can follow a
non-terminal).

Strategic use: Removing non-determinism from expand moves of
the PG

These sets can be computed by GFA.

Grammar Flow Analysis

Another Grammar for Arithmetic Expressions

Left-factored grammar G2, i.e. left recursion removed.

S → E

E → TE ′ E generates T with a continuation E ′

E ′ → +E |ǫ E ′ generates possibly empty sequence of +T s
T → FT ′ T generates F with a continuation T ′

T ′ → ∗T |ǫ T ′ generates possibly empty sequence of ∗F s
F → id|(E)

G2 defines the same language as G0 und G1.

Grammar Flow Analysis

The FIRST1 Sets

◮ A production N → α is applicable for symbols that “begin” α

◮ Example: Arithmetic Expressions, Grammar G2

◮ The production F → id is applied when the current symbol is

id
◮ The production F → (E) is applied when the current symbol is

(
◮ The production T → F is applied when the current symbol is

id or (

◮ Formal definition:

FIRST1(α) = {a ∈ VT |∃γ : α
∗

=⇒ aγ}

Grammar Flow Analysis

The FOLLOW1 Sets

◮ A production N → ǫ is applicable for symbols that “can follow”
N in some derivation

◮ Example: Arithmetic Expressions, Grammar G2

◮ The production E ′ → ǫ is applied for symbols # and)
◮ The production T ′ → ǫ is applied for symbols #,) and +

◮ Formal definition:

FOLLOW1(N) = {a ∈ VT |∃α, γ : S
∗

=⇒ αNaγ}

Grammar Flow Analysis

Definitions

Let k ≥ 1
k-prefix of a word w = a1 . . . an

k : w =

{

a1 . . . an if n ≤ k

a1 . . . ak otherwise
k-concatenation
⊕k : V ∗ × V ∗ → V≤k , defined by u⊕kv = k : uv

extended to languages
k : L = {k : w | w ∈ L}
L1⊕kL2 = {x⊕ky | x ∈ L1, y ∈ L2}.

V≤k =
⋃k

i=1
V i set of words of length at most k . . .

V≤k
T# = V≤k

T ∪ V k−1

T {#} . . . possibly terminated by #.

Grammar Flow Analysis

FIRSTk and FOLLOWk

FIRSTk : (VN ∪ VT)∗ → 2V
≤k
T where

FIRSTk(α) = {k : u | α
∗

=⇒ u}

set of k–prefixes of terminal words for
α .

X

∈ FIRSTk(X) ∈ FOLLOWk(X)

FOLLOWk : VN → 2V
≤k
T# where

FOLLOWk(X) = {w |S
∗

=⇒ βXγ and w ∈ FIRSTk(γ)}

set of k–prefixes of terminal words that may immediately follow X .

Grammar Flow Analysis

GFA-Problem FIRSTk

bottom up-GFA-problem FIRSTk

L (2V
≤k
T ,⊆, ∅,∪)

T Fir p(d1, . . . , dnp) = {u0}⊕kd1⊕k{u1}⊕kd2⊕k . . .⊕kdnp⊕k{unp},
if p = (X0 → u0X1u1X2 . . .Xnpunp);

Fir p = k : u for a terminal production X → u

C ∪
The recursive system of equations for FIRSTk is

Fik(X) =
⋃

{p|p[0] = X}
Firp(Fik(p[1]), . . . ,Fik(p[np])) ∀X ∈ VN

(Fik)

Grammar Flow Analysis

FIRSTk Example

The bottom up-GFA-problem FIRST1 for grammar G2 with the
productions:

0 : S → E 3 : E ′ → +E 6 : T ′ → ∗T
1 : E → TE ′ 4 : T → FT ′ 7 : F → (E)
2 : E ′ → ε 5 : T ′ → ε 8 : F → id

G2 defines the same language as G0 und G1.
The transfer functions for productions 0 – 8 are:
Fir0(d) = d Fir3(d) = {+}
Fir1(d1, d2) = Fir4(d1, d2) = d1⊕1d2 Fir6(d) = {∗}
Fir2 = Fir5 = {ε} Fir7(d) = {(}

Fir8 = {id}

Grammar Flow Analysis

Iteration

Iterative computation of the FIRST1 sets:
S E E ′ T T ′ F

∅ ∅ ∅ ∅ ∅ ∅

Grammar Flow Analysis

GFA-Problem FOLLOWk

top down-GFA-problem FOLLOWk

L (2V
≤k
T# ,⊆, ∅,∪)

T Folp,i (d) = {ui}⊕kFik(Xi+1)⊕k{ui+1}⊕k . . .⊕kFik(Xnp)⊕k{unp}⊕kd

if p = (X0 → u0X1u1X2 . . .Xnpunp);
C ∪
S {#}

The resulting system of equations for FOLLOWk is

Fok(X) =
⋃

{p|p[i] = X , 1 ≤ i ≤ np}
Folp,i (Fok(p[0])) ∀X ∈ VN − {S}

Fok(S) = {#}
(Fok)

Grammar Flow Analysis

FOLLOWk Example

Regard grammar G2. The transfer functions are:
Fol0,1(d) = d

Fol1,1(d) = Fi1(E
′)⊕1d = {+, ε}⊕1d ,

Fol1,2(d) = d

Fol3,1(d) = d

Fol4,1(d) = Fi1(T
′)⊕1d = {∗, ε}⊕1d ,

Fol4,2(d) = d

Fol6,1(d) = d

Fol7,1(d) = {)}
Iterative computation of the FOLLOW1 sets:

S E E ′ T T ′ F

{#} ∅ ∅ ∅ ∅ ∅

