Grammar Flow Analysis

Grammar Flow Analysis
— Wilhelm/Maurer: Compiler Design, Chapter 8 —

Reinhard Wilhelm

Universitat des Saarlandes
wilhelm@cs.uni-sb.de

2. November 2009

acy

Grammar Flow Analysis

Notation

Generic names ‘ for ‘

A B,C,X,Y,Z | Non-terminal symbols
ab,c,... Terminal symbols

U, v,Ww,x,y,z Terminal strings

a, By, o, Strings over Vyy U V1
p,p,p1,p2,... | Productions

» Standard notation for production
p=(Xo— uXiur ... Xn,up,)
np — Arity of p
» (p, i) — Position i in production p (0 </ < np)
> pli] stands for X;, (0 < i < np),
» X occurs at position i — p[i] = X

Grammar Flow Analysis

Reachability and Productivity

Non-terminal A is

reachable: iff there exist 1,2 € VU V) such that
S = p1Ap
productive: iff there exists w € VX, A = w
These definitions are useless for tests;

they involve quantifications over infinite sets.

Grammar Flow Analysis

A two level Definition

1. A non-terminal is reachable through its occurrence (p, i) iff
p[0] is reachable,

2. A non-terminal is reachable iff it is reachable through at least
one of its occurrences,

3. S’ is reachable.

1. A non-terminal A is productive through production p iff
A = p[0] and all non-terminals p[i](1 < i < np) are productive.
2. A non-terminal is productive iff it is productive through at
least one of its alternatives.

» Reachability and productivity for a grammar given by a
(recursive) system of equations.

> Least solution wanted to eliminate as many useless
non-terminals as possible.

Grammar Flow Analysis

Typical Two Level Simultaneous Recursion

Productivity: 1. dependence of property of left side non-terminal
on right side non-terminals,
2. combination of the information from the
different alternatives for a non-terminal.
Reachability: 1. dependence of property of occurrences of
non-terminals on the right side on the property
of the left side non-terminal,
2. combination of the information from the
different occurrences for a non-terminal,
3. the initial property.

In the specification

1. given by transfer functions
2. given by combination functions

Grammar Flow Analysis

Schema for the Computation

» Grammar Flow Analysis (GFA) computes a property
function | : Vy — D
where D is some domain of information for non-terminals,
mostly properties of sets of trees,

» Productivity computed by a bottom-up Grammar Flow
Analysis (bottom-up GFA)

» Reachability computed by a top-down Grammar Flow
Analysis (top-down GFA)

Grammar Flow Analysis

Trees, Subtrees, Tree Fragments

Parse tree

Subtree upper treefragment
for X for

X
X reachable: Set of upper tree fragments for X not empty,
X productive: Set of subtrees for X not empty.

DA

Grammar Flow Analysis

Bottom-up GFA

Given a cfg G.
A bottom-up GFA-problem for G and a property function /:

D: a domain DT,
T: transfer functions F,1: D" — D7 for each p € P,
C: a combination function V1: 20T — D7,

This defines a system of equations for G and /:
| 1(X)= VI {Fpl (I(pA]), .-, I(p[np])) | PIO] = X} VX € Vi | (1)

Grammar Flow Analysis

Top-down GFA

Given a cfg G.
A top down — GFA-problem for G and a property function /:
D: a domain D|;

T: np transfer functions F,;|: D| — D|, 1 <i < np,
for each production p € P,

C: a combination function V|: 20! — D,
S: a value [y for S under the function /.

A top-down GFA-problem defines a system of equations for G and /

15) = To
I(p,i)= Fp,il (I(p[0])) forall pe P, 1 <i<n, (11)
I(X) = VI {l(p,i)|pli] =X}, forall X € Vy —{S}

Grammar Flow Analysis

Recursive System of Equations

Systems like (/1) and (/|) are in general recursive
Questions: Do they have
» solutions?

» unique solutions?

DA

Grammar Flow Analysis

They do have solutions if
» the domain

» is partially ordered by some relation C,

» has a uniquely defined smallest element, 1,

» has a least upper bound, d; LI db, for each two elements dy, d>
» and has only finitely ascending chains,

and
» the transfer and the combination functions are monotonic.

Our domains are finite, all functions are monotonic.

R
Grammar Flow Analysis

Fixpoint Iteration

» Solutions are fixpoints of a function

» Computed iteratively starting with 1L, the function which
maps all non-terminals to L.

» Apply transfer functions and combination functions until
nothing changes.

We always compute least fixpoints.

Grammar Flow Analysis

Productivity Reuvisited

Dt {false C true} true for productive
Fol A (true for n, = 0)
vV (false for non-terminals

without productions)
Domain: D7 satisfies the conditions,
transfer functions: conjunctions are monotonic,

combination function: disjunction is monotonic.

Resulting system of equations:
| Pr(X) = V{AZ; Pr(plil) | p[0] = X} forall X € Vy | (Pr)

Grammar Flow Analysis

Example: Productivity

Given the following grammar:

s — S
S — aX
G={S,SX,Y,Z},{a, b}, X — bS|aYbYy ;,5)
Y — balaZ
Z — azX
Resulting system of equations: Fixpoint iteration
Pr(S) = Pr(X) > |X Y |7
Pr(X) = Pr(S)V Pr(Y) false | false | false | false
Pr(Y) = true V Pr(Z) = true
Pr(Z) = Pr(Z)A Pr(X)

Grammar Flow Analysis

Reachability Revisited

D| false C {true} true for reachable
Fpil id identity mapping
vl V Boolean Or (false, if there
is no occ. of the non-terminal)
Io true
Domain: D| satisfies the conditions,
transfer functions: identity is monotonic,
combination function: disjunction is monotonic.

Resulting system of equations for reachability:
Re(S) = true (Re)
Re(X)= V{Re(p[0]) [pl] =X, 1 <i<nmp} ¥VX#5

Grammar Flow Analysis

Example: Reachability

Given the grammar G = ({S, U, V,X,Y,Z},{a, b, c,d},
The equations:

(S — Y
Y > YZ|Ya|b Re(S) = true
U—V s Re(U) = false
X o c) Re(V) = Re(U)V Re(V)
V- Vd|d Re(X) = Re(Z)
| Z — zx Re(Y) = Re(S)V Re(Y)
Re(Z) = Re(Y)V Re(2)

Fixpoint iteration:
S U V X Y Z
true | false | false | false | false | false

R

Grammar Flow Analysis

First and Follow Sets

Parser generators need precomputed information about sets of
» prefixes of words for non-terminals (words that can begin
words for non-terminals)
» followers of non-terminals (words which can follow a
non-terminal).
Strategic use: Removing non-determinism from expand moves of

the P¢
These sets can be computed by GFA.

Grammar Flow Analysis

Another Grammar for Arithmetic Expressions

Left-factored grammar Gy, i.e. left recursion removed.

S—E

E — TE' E generates T with a continuation E’

E' — +El|e E’ generates possibly empty sequence of +Ts
T — FT’ T generates F with a continuation T’

T’ — xTle T’ generates possibly empty sequence of xFs
F —id|(E)

G> defines the same language as Gg und G;.

Grammar Flow Analysis

The FIRST; Sets

» A production N — « is applicable for symbols that “begin” o
» Example: Arithmetic Expressions, Grammar G
» The production F — id is applied when the current symbol is

id

» The production F — (E) is applied when the current symbol is
(

» The production T — F is applied when the current symbol is
id or (

» Formal definition:

FIRST:(a) = {a € V7|3y:a = av}

Grammar Flow Analysis

The FOLLOW; Sets

» A production N — ¢ is applicable for symbols that “can follow”
N in some derivation

» Example: Arithmetic Expressions, Grammar Gy

» The production E’ — € is applied for symbols # and)
» The production T’ — ¢ is applied for symbols #,) and +
» Formal definition:

FOLLOW;(N) = {a € V7|3a,v: S = alNay}

Grammar Flow Analysis

Definitions

Let k >1
k-prefix of a word w = a7 ... a,
k:w:{ a...a, |if nglk
ap...ax otherwise
k-concatenation
@y 0 V* x V* — V=K defined by udyv = k : uv
extended to languages
k:L={k:w|welL}
Li®klo = {x®ky | x € L1,y € Ly}.
vk = Uk, Vi set of words of length at most & ...

V%Z = V-%k U V7k—_1{#} ... possibly terminated by #.

Grammar Flow Analysis

FIRSTy and FOLLOW;

FIRST} : (Vi U Vr)* — 2V7" where
FIRSTy (o) = {k :u | a == u} p

set of k—prefixes of terminal words for ‘ | ‘ |

o . € FIRSTA(X) € FOLLOW(X)

FOLLOW : Viy — 2Y7% where
FOLLOW,(X) = {w|S == BX~ and w € FIRST ()}

set of k—prefixes of terminal words that may immediately follow X.

Grammar Flow Analysis

GFA-Problem FIRST

bottom up-GFA-problem FIRST,

<k
L (2Y7,C.0,V)
T Firp(dy, ..., dn,) = {uo} @k d1®i{u } k@ . .. Didn, D{tin, },
I'F P = (XO — UOX1U1X2 N anunp);
Firp = k : u for a terminal production X — u

CcCu
The recursive system of equations for FIRST), is
Fie(X)= U Firy(Fik(p[1]), - .., Fix(p[np])) ¥X € Vi

{plp[0] = X}

(Fi)

Grammar Flow Analysis

FIRST) Example

The bottom up-GFA-problem FIRST; for grammar G, with the

productions:

S — E 3: EE —- 4+E 6: T
1: E — TE 4: T — FT' 7: F
2: E — ¢ 5. TN — ¢ 8: F

G> defines the same language as Gg und G;.
The transfer functions for productions 0 — 8 are:

Firo(d) = d Firs(d) = {+}
Firl(dl, d2) = Fir4(d1, d2) = diP1d> F/rﬁ(d) = {*}
Firy = Firs = {¢} Firz(d) = {(}

Firg = {Id}

Ll

xT
(E)

e
Grammar Flow Analysis
lteration

Iterative computation of the FIRST; sets:
| S| EJE T T]F]
0 010 0 0

0

Grammar Flow Analysis

GFA-Problem FOLLOW;

top down-GFA-problem FOLLOW

L (274,C,0,0)

T Folpyi(d) = {ui}®kFik(Xiy1)Pr{tis1} Dk - - - DrFik(Xn,) Br{tn, } Sid
if p=(Xo — uoXotn Xo... X, tn,);

cu
S {#}
The resulting system of equations for FOLLOW is
= U Vi —
Fox(X) (olpli] = X1 < 7 < o} Fol, i(Fok(p[0])) VX € Vy — {S}
Foi(S) = {#}

(Fok)

Grammar Flow Analysis

FOLLOW, Example

Regard grammar G;. The transfer functions are:
FO/QJ(O’) = d

FO/l,l(d) = Fil(E/)@ld = {—I—,E}@ld,
FO/172(O’) = d

FO/3,1(d) =d

FO/471(O’) = Ffl(T,)@ld = {*,E}@ld,
FO/4,2(d) = d

FO/671(O’) = d

Folz.1(d) = {)}

Iterative computation of the FOLLOW; sets:
s [ElE T[T]|F]

