
Design of an SSA Register Allocator
SSA ’09

Sebastian Hack

computer science

saarland
university

computer science

saarland
university

Part I

Foundations

Sebastian Hack SSA Register Allocator 2 / 35

computer science

saarland
universityNon-SSA Interference Graphs

An inconvenient property

Program

a← 1

b← a + a
c ← a + 1
e ← b + 1
← c

d ← 1
e ← a + 1
← d

...

Interference Graph

a

b

c

e

d

The number of live variables at each instruction (register pressure) is 2

However, we need 3 registers for a correct register allocation

This gap can be arbitrarily large

Sebastian Hack SSA Register Allocator 3 / 35

computer science

saarland
universityGraph-Coloring Register Allocation

[Chaitin ’80, Briggs ’92, Appel & George ’96, Park & Moon ’04]

Build IG Coalesce Color

Spill

coloring heuristic failed

program changed

Every undirected graph can occur as an interference graph
=⇒ Finding a k-coloring is NP-complete

Color using heuristic
=⇒ Iteration necessary

Might introduce spills although IG is k-colorable

Rebuilding the IG each iteration is costly

Sebastian Hack SSA Register Allocator 4 / 35

computer science

saarland
universityGraph-Coloring Register Allocation

[Chaitin ’80, Briggs ’92, Appel & George ’96, Park & Moon ’04]

Build IG Coalesce Color

Spill

coloring heuristic failed

program changed

Spill-code insertion is crucial for the program’s performance

Hence, it should be very sensitive to the structure of the program
I Place load and stores carefully

I Avoid spilling in loops!

Here, it is merely a fail-safe for coloring

Sebastian Hack SSA Register Allocator 4 / 35

computer science

saarland
universityColoring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

Sebastian Hack SSA Register Allocator 5 / 35

computer science

saarland
universityColoring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

d,

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

Sebastian Hack SSA Register Allocator 5 / 35

computer science

saarland
universityColoring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

d, e,

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

Sebastian Hack SSA Register Allocator 5 / 35

computer science

saarland
universityColoring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

d, e, c,

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

Sebastian Hack SSA Register Allocator 5 / 35

computer science

saarland
universityColoring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

d, e, c, a,

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

Sebastian Hack SSA Register Allocator 5 / 35

computer science

saarland
universityColoring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

d, e, c, a, b

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

Sebastian Hack SSA Register Allocator 5 / 35

computer science

saarland
universityColoring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

d, e, c, a, b

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

Sebastian Hack SSA Register Allocator 5 / 35

computer science

saarland
universityColoring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

d, e, c, a,

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

Sebastian Hack SSA Register Allocator 5 / 35

computer science

saarland
universityColoring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

d, e, c,

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

Sebastian Hack SSA Register Allocator 5 / 35

computer science

saarland
universityColoring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

d, e,

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

Sebastian Hack SSA Register Allocator 5 / 35

computer science

saarland
universityColoring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

d,

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

Sebastian Hack SSA Register Allocator 5 / 35

computer science

saarland
universityColoring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

Sebastian Hack SSA Register Allocator 5 / 35

computer science

saarland
universityColoring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

Sebastian Hack SSA Register Allocator 5 / 35

computer science

saarland
universityColoring

Subsequently remove the nodes from the graph

Re-insert the nodes in reverse order

Assign each node the next possible color

d e

ca b

elimination order

But. . .

this graph is 3-colorable. We obviously picked a wrong order.

Sebastian Hack SSA Register Allocator 5 / 35

computer science

saarland
universityColoring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

Sebastian Hack SSA Register Allocator 6 / 35

computer science

saarland
universityColoring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

a,

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

Sebastian Hack SSA Register Allocator 6 / 35

computer science

saarland
universityColoring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

a, c,

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

Sebastian Hack SSA Register Allocator 6 / 35

computer science

saarland
universityColoring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

a, c, d,

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

Sebastian Hack SSA Register Allocator 6 / 35

computer science

saarland
universityColoring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

a, c, d, e,

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

Sebastian Hack SSA Register Allocator 6 / 35

computer science

saarland
universityColoring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

a, c, d, e, b

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

Sebastian Hack SSA Register Allocator 6 / 35

computer science

saarland
universityColoring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

a, c, d, e,

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

Sebastian Hack SSA Register Allocator 6 / 35

computer science

saarland
universityColoring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

a, c, d,

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

Sebastian Hack SSA Register Allocator 6 / 35

computer science

saarland
universityColoring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

a, c,

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

Sebastian Hack SSA Register Allocator 6 / 35

computer science

saarland
universityColoring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

a,

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

Sebastian Hack SSA Register Allocator 6 / 35

computer science

saarland
universityColoring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

Sebastian Hack SSA Register Allocator 6 / 35

computer science

saarland
universityColoring

PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e

ca b

elimination order

From Graph Theory [Berge ’60, Fulkerson/Gross ’65, Gavril ’72]

A PEO allows for an optimal coloring in k × |V |
The number of colors is bound by the size of the largest clique

Sebastian Hack SSA Register Allocator 6 / 35

computer science

saarland
universityColoring

PEOs

Graphs with holes larger than 3 have no PEO, e.g.

Graphs with PEOs are called chordal

Core Theorem of SSA Register Allocation
[Brisk; Bouchez, Darte, Rastello; Hack, around 2005]

The dominance relation in SSA programs induces a PEO in the IG

Thus, SSA IGs are chordal

Sebastian Hack SSA Register Allocator 7 / 35

computer science

saarland
universityColoring

PEOs

Graphs with holes larger than 3 have no PEO, e.g.

Graphs with PEOs are called chordal

Core Theorem of SSA Register Allocation
[Brisk; Bouchez, Darte, Rastello; Hack, around 2005]

The dominance relation in SSA programs induces a PEO in the IG

Thus, SSA IGs are chordal

Sebastian Hack SSA Register Allocator 7 / 35

computer science

saarland
universityProperties of SSA Register Allocation

Before a value v is added to a PEO,
add all values whose definitions are dominated by v

A post order walk of the dominance tree defines a PEO

A pre order walk of the dominance tree yields a coloring sequence

IGs of SSA-form programs can be colored optimally in O(k · |V |)

Without constructing the interference graph itself

Number of needed registers is exactly determined by register pressure

After lowering the pressure, no additional spills will be introduced

But . . .

What about the φ-functions?

Sebastian Hack SSA Register Allocator 8 / 35

computer science

saarland
universityProperties of SSA Register Allocation

Before a value v is added to a PEO,
add all values whose definitions are dominated by v

A post order walk of the dominance tree defines a PEO

A pre order walk of the dominance tree yields a coloring sequence

IGs of SSA-form programs can be colored optimally in O(k · |V |)

Without constructing the interference graph itself

Number of needed registers is exactly determined by register pressure

After lowering the pressure, no additional spills will be introduced

But . . .

What about the φ-functions?

Sebastian Hack SSA Register Allocator 8 / 35

computer science

saarland
universityΦ-Functions

Consider following example

z1 ← φ(x1, y1)
z2 ← φ(x2, y2)
z3 ← φ(x3, y3)

(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)

Φ-functions are parallel copies on control flow edges

Considering assigned registers . . .

. . . Φs represent register permutations

Sebastian Hack SSA Register Allocator 9 / 35

computer science

saarland
universityΦ-Functions

Consider following example

z1 ← φ(x1, y1)
z2 ← φ(x2, y2)
z3 ← φ(x3, y3)

(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)

(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)

Φ-functions are parallel copies on control flow edges

Considering assigned registers . . .

. . . Φs represent register permutations

Sebastian Hack SSA Register Allocator 9 / 35

computer science

saarland
universityΦ-Functions

Consider following example

z1 ← φ(x1, y1)
z2 ← φ(x2, y2)
z3 ← φ(x3, y3)

(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)

(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)

Φ-functions are parallel copies on control flow edges

Considering assigned registers . . .

. . . Φs represent register permutations

Sebastian Hack SSA Register Allocator 9 / 35

computer science

saarland
universityΦ-Functions

Consider following example

z1 ← φ(x1, y1)
z2 ← φ(x2, y2)
z3 ← φ(x3, y3)

(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)(z1, z2, z3)← (x1, x2, x3) (z1, z2, z3)← (y1, y2, y3)

Φ-functions are parallel copies on control flow edges

Considering assigned registers . . .

. . . Φs represent register permutations

Sebastian Hack SSA Register Allocator 9 / 35

computer science

saarland
universityIntuition: Why are SSA IGs chordal?

Straight-line code

Program Live Ranges

aa← · · ·

bb ← · · ·
cc ← · · ·

dd ← a + b

ee ← c + 1

aa← · · ·

Interference Graph

a

b

c

d

e

How can we create a 4-cycle {a, c , d , e}?

Redefine a =⇒ SSA violated!

Sebastian Hack SSA Register Allocator 10 / 35

computer science

saarland
universityIntuition: Why are SSA IGs chordal?

Straight-line code

Program Live Ranges

aa← · · ·

bb ← · · ·
cc ← · · ·

dd ← a + b

ee ← c + 1

aa← · · ·

Interference Graph

a

b

c

d

e

How can we create a 4-cycle {a, c , d , e}?
Redefine a =⇒ SSA violated!

Sebastian Hack SSA Register Allocator 10 / 35

computer science

saarland
universityIntuition: φ-functions break cycles in the IG

Program and live ranges

a← · · ·

d ← · · ·
e ← a + · · ·
← d

b← · · ·
c ← a + · · ·
e ← b
← c

Interference Graph

d
a

b
c

e

Sebastian Hack SSA Register Allocator 11 / 35

computer science

saarland
universityIntuition: φ-functions break cycles in the IG

Program and live ranges

a← · · ·

d ← · · ·
e1 ← a + · · ·
← d

b← · · ·
c ← a + · · ·

e2 ← b
← c

e3 ← φ(e1, e2)

Interference Graph

d
a

b
c

e1

e3

e2

Sebastian Hack SSA Register Allocator 11 / 35

computer science

saarland
universityIntuition: Why Parallel Copies are Good

Parallel copies Sequential copies

(a′, b′, c ′, d ′)← (a, b, c , d)

d ′ ← d
c ′ ← c
b′ ← b
a′ ← a

a

a′

b

b′

c

c ′

d

d ′

a

a′

b

b′

c

c ′

d

d ′

Sebastian Hack SSA Register Allocator 12 / 35

computer science

saarland
universityIntuition: Why Parallel Copies are Good

Parallel copies Sequential copies

(a′, b′, c ′, d ′)← (a, b, c , d)

d ′ ← d
c ′ ← c
b′ ← b
a′ ← a

a

a′

b

b′

c

c ′

d

d ′

a

a′

b

b′

c

c ′

d

d ′

Sebastian Hack SSA Register Allocator 12 / 35

computer science

saarland
universityIntuition: Why Parallel Copies are Good

Parallel copies Sequential copies

(a′, b′, c ′, d ′)← (a, b, c , d)

d ′ ← d
c ′ ← c
b′ ← b
a′ ← a

a

a′

b

b′

c

c ′

d

d ′

a

a′

b

b′

c

c ′

d

d ′

Sebastian Hack SSA Register Allocator 12 / 35

computer science

saarland
universitySummary so far

IGs of SSA-form programs are chordal

The dominance relation induces a PEO

Architecture without iteration

Spill Color

Coalesce

Φ-Impl.

Register assignment optimal in linear time

Do not need to construct interference graph

Sebastian Hack SSA Register Allocator 13 / 35

computer science

saarland
university

Part II

Register Constraints

Sebastian Hack SSA Register Allocator 14 / 35

computer science

saarland
universityHandling of Register Constraints

Certain instructions require operand to reside in special register

Instruction set architecture (ISA), e.g.:
Shift count must be in cl on x86

Calling conventions, e.g.:
First integer argument of function in R3 on PPC/Linux

Caller-/Callee-save registers within a function

Sebastian Hack SSA Register Allocator 15 / 35

computer science

saarland
universityUsual way of handling constraints

IR:

· · · ← call foo t1, t2, t3

Lower IR:

...
mov R3, t1
mov R4, t2
mov R5, t3
call foo
...

Registers are like variables
in the lower IR

Multiple assignments
possible (breaks SSA!)

Has poor engineering
properties:

Always special case in the
code

Does R3 interfere with
t1?

How long can a reg live
range be?

Sebastian Hack SSA Register Allocator 16 / 35

computer science

saarland
universityEven worse

Theorem [Marx ’05]

If a chordal graph contains two nodes precolored to the same color,
coloring is NP-complete

Solution:

Split all live ranges in front of the constrained instruction

Separates graph into two components

Annotate the constraints at the instruction

Let the coloring algorithm fulfill the constraints

Basically pushes the problem to the coalescer

Sebastian Hack SSA Register Allocator 17 / 35

computer science

saarland
universityExample

Before:
a← · · ·

...
← call foo (b, c, d)
...
← a

After:
a← · · ·

...
(a′, b′, c ′, d ′)← (a, b, c , d)

← call foo (b′, c ′, d ′)
...
← a′

Sebastian Hack SSA Register Allocator 18 / 35

computer science

saarland
universityCaller-/Callee-Save

Can be modelled by normal register constraints

Callee-Save registers are implicit parameters to a function

Caller-Save registers are implicit results of a function

Insert dummy SSA variables for these parameters

The spiller will (transparently) do the rest

(c1, c2) ← start
...

(r1, r2) ← call foo(b, c , d)
dummy use(r1, r2)

...
← end (c1, c2)

Sebastian Hack SSA Register Allocator 19 / 35

computer science

saarland
university

Part III

Spilling

Sebastian Hack SSA Register Allocator 20 / 35

computer science

saarland
universitySpilling

SSA-Form Register Allocation

Spilling is not dependent on the coloring algorithm

Do not spill nodes in an interference graph

To color optimally:
Reduce register pressure to number of available registers

Can insert store and load instructions sensitively to the program’s
structure

Most important:
I Pull reloads in front loops

I Push stores behind loops

Revisit Belady’s algorithm

Sebastian Hack SSA Register Allocator 21 / 35

computer science

saarland
universityLinear Scan

Linearizations

y←
x←

 1
...

S

← y
...

L

← x
...

H

... E

Example CFG

y←
x←

 1
...

S

← y
...

L

← x
...

H

...E

x spilled

Bad:
Reload in
loop

y←
x←

 1
...

S

← x
...

H

← y
...

L

...E

y spilled

Good: No
reload in
loop

Sebastian Hack SSA Register Allocator 22 / 35

computer science

saarland
universityLinear Scan

Linearizations

y←
x←

 1
...

S

← y
...

L

← x
...

H

... E

Example CFG

y←
x←

 1
...

S

← y
...

L

← x
...

H

...E

Linearization

Register occupation at entry
of H is given by exit of L!

However, there is no
control-flow between both

Example last slide:

I Linearization dictates reloads

I Might unnecessarily reload in
loops!

Why do we linearize at all?

Sebastian Hack SSA Register Allocator 23 / 35

computer science

saarland
universityBelady on CFGs

Belady evicts the variable whose next use is farthest in the future

Good because frees register for the longest possible time

On straight-line code minimum number of replacements

Our goals:

Extend Belady to CFGs

Try to emulate Belady on each trace as good as possible

Keep it simple: Apply Belady to each basic block once

Where can we tweak?
I Next-use distance

I Occupation of the registers at entry of each block

Sebastian Hack SSA Register Allocator 24 / 35

computer science

saarland
universityBelady on Traces

y← · · ·
x← · · ·

 1
...

S

 0
...

B

← x

 1
...
← x

L

← x
...

H

← y
← x

E

y←
x←

 1
...

S

← x

 1
...

← x

L

← y
← x

E

One of x, y has to be
spilled at the end of S

Use of y is farther away

We cannot know this by
only looking at S

Conclusion:
Need global next-uses
distances!

Sebastian Hack SSA Register Allocator 25 / 35

computer science

saarland
universityBelady on Traces

y← · · ·
x← · · ·

 1
...

S

 0
...

B

← x

 1
...
← x

L

← x
...

H

← y
← x

E

Consider E

x is in a register on both
incoming branches

We can assume it to be in
registers on the entry of E

Conclusion:
Processing predecessors
first makes register
occupation available

Sebastian Hack SSA Register Allocator 25 / 35

computer science

saarland
universityBelady on Traces

y← · · ·
x← · · ·

 1
...

S

 0
...

B

← x

 1
...
← x

L

← x
...

H

← y
← x

E

y←
x←

 1
...

S

 0
...B

← x
...

H

← x
...

H

← x
...

H

← y
← x

E

Neither x nor y can
“survive” B

x is reloaded in first
execution of H

Can be used from a
register ever after

Conclusion:
Provide “loop workset” at
loop entrances

Sebastian Hack SSA Register Allocator 25 / 35

computer science

saarland
universityOur Approach

[Braun & Hack, CC’09]

Apply furthest-first algorithm to each block in the CFG once

Do not flatten the CFG

Algorithm

1 Compute global next uses (entails liveness!)

2 For each block B in reverse post order of the CFG:

1 Determine initialization of register set sensitive to CF predecessors
2 Insert coupling code at the block entry
3 Perform Belady’s algorithm on B

3 Reconstruct SSA

Sebastian Hack SSA Register Allocator 26 / 35

computer science

saarland
universitySSA Reconstruction

x0 ←

← spill x0
...

x0 ← reload
← x0

← x0

x0 ←

← spill x0
...

x1 ← reload
← x1

← x0

x0 ←

← spill x0
...

x1 ← reload
← x1

x2 ← φ(x0, x1)
· · · ← x2

Inserting reloads for variables creates additional definitions

Violates SSA

Thus, SSA has to be reconstructed after spilling

Use algorithm by [Sastry & Ju PLDI’97]

Sebastian Hack SSA Register Allocator 27 / 35

computer science

saarland
universityResults

Implemented in our x86 research compiler libFirm

Features SSA-based register allocator

Ran CINT2000 benchmark

Compare against Chaitin/Briggs graph-coloring allocator (GC)
LLVM’s linear scan (LS)

Quality

Reduction of executed spills
and reloads against:

GC LS

Reloads 58.2% 54.5%
Spills 41.9% 61.5%

Compilation Speed

0 200 400 600 800 1000 1200 1400
0

5

10

15

20

25

30

35

Number of Instructions

S
p

ill
T

im
e

[m
se

c.
]

Average throughput:
430 insns per msec

(2GHz Core 2 Duo)

Sebastian Hack SSA Register Allocator 28 / 35

computer science

saarland
university

Part IV

Coalescing

Sebastian Hack SSA Register Allocator 29 / 35

computer science

saarland
universityCoalescing

[Hack & Goos, PLDI’08]

Do not modify the graph

Modify the coloring!

Try to assign copy-related nodes the same color

Introduce cost function for colorings
=⇒ Sum of all weights of unfulfilled affinities

Initial coloring (cost: 6)

2

1
2

1

Better coloring (cost: 1)

2

1
2

1

Sebastian Hack SSA Register Allocator 30 / 35

computer science

saarland
universityCoalescing

[Hack & Goos, PLDI’08]

Do not modify the graph

Modify the coloring!

Try to assign copy-related nodes the same color

Introduce cost function for colorings
=⇒ Sum of all weights of unfulfilled affinities

Initial coloring (cost: 6)

2

1
2

1

Better coloring (cost: 1)

2

1
2

1

Sebastian Hack SSA Register Allocator 30 / 35

computer science

saarland
universityCoalescing

[Hack & Goos, PLDI’08]

Do not modify the graph

Modify the coloring!

Try to assign copy-related nodes the same color

Introduce cost function for colorings
=⇒ Sum of all weights of unfulfilled affinities

Initial coloring (cost: 6)

2

1
2

1

Better coloring (cost: 1)

2

1
2

1

Sebastian Hack SSA Register Allocator 30 / 35

computer science

saarland
universityCoalescing

[Hack & Goos, PLDI’08]

Do not modify the graph

Modify the coloring!

Try to assign copy-related nodes the same color

Introduce cost function for colorings
=⇒ Sum of all weights of unfulfilled affinities

Coalesce after coloring

Spill Color Coalesce

Sebastian Hack SSA Register Allocator 30 / 35

computer science

saarland
universityRecoloring

Optimistically try to assign move-related nodes the same color

Resolve color clashes recursively through the graph

2

2

1

1

Sebastian Hack SSA Register Allocator 31 / 35

computer science

saarland
universityRecoloring

Optimistically try to assign move-related nodes the same color

Resolve color clashes recursively through the graph

2

2

1

1

Sebastian Hack SSA Register Allocator 31 / 35

computer science

saarland
universityRecoloring

Optimistically try to assign move-related nodes the same color

Resolve color clashes recursively through the graph

2

2

1

1

Sebastian Hack SSA Register Allocator 31 / 35

computer science

saarland
universityRecoloring

Optimistically try to assign move-related nodes the same color

Resolve color clashes recursively through the graph

2

2

1

1

Sebastian Hack SSA Register Allocator 31 / 35

computer science

saarland
universityRecoloring

Optimistically try to assign move-related nodes the same color

Resolve color clashes recursively through the graph

2

2

1

1

Sebastian Hack SSA Register Allocator 31 / 35

computer science

saarland
universityRecoloring

Optimistically try to assign move-related nodes the same color

Resolve color clashes recursively through the graph

2

2

1

1

Sebastian Hack SSA Register Allocator 31 / 35

computer science

saarland
universityRecoloring

Optimistically try to assign move-related nodes the same color

Resolve color clashes recursively through the graph

2

2

1

1

Sebastian Hack SSA Register Allocator 31 / 35

computer science

saarland
universityRecoloring

Optimistically try to assign move-related nodes the same color

Resolve color clashes recursively through the graph

2

2

1

1

Sebastian Hack SSA Register Allocator 31 / 35

computer science

saarland
universityRecoloring

Optimistically try to assign move-related nodes the same color

Resolve color clashes recursively through the graph

2

2

1

1

Sebastian Hack SSA Register Allocator 31 / 35

computer science

saarland
universityRecoloring

Optimistically try to assign move-related nodes the same color

Resolve color clashes recursively through the graph

2

2

1

1

Sebastian Hack SSA Register Allocator 31 / 35

computer science

saarland
universityRecoloring

Optimistically try to assign move-related nodes the same color

Resolve color clashes recursively through the graph

2

2

1

1

Sebastian Hack SSA Register Allocator 31 / 35

computer science

saarland
universityQuality of the Results

0

0.1

164 175 176 181 186 197 253 254 255 256 300

0
.0

7

0
.0

6

0
.0

8

0
.0

5

0
.1

4

0
.0

8

0
.1

0

0
.1

0

0
.1

4

0
.0

8

0
.0

7

0
.0

6

0
.0

4

0
.0

6

0
.0

5

0
.1

3

0
.0

8

0
.0

8

0
.0

8

0
.1

1

0
.0

5

0
.0

5

Ratio

Bench

Heur ILP

geomean Heur: 0.084, geomean ILP: 0.067

Sum of weights of unfulfilled affinities after optimization relative to unoptimized

Sebastian Hack SSA Register Allocator 32 / 35

computer science

saarland
universityComparison to existing techniques

Conservative Coalescing
I Best known conservative coalescing technique

I Costs left over by IRC were reduced by 22.5%

I Number of copies left over by IRC reduced by 44.3%

Aggressive/Optimistic Coalescing
I Did not compare to aggressive coalescing algorithms

I May spill =⇒ different problem

Sebastian Hack SSA Register Allocator 33 / 35

computer science

saarland
universityConclusions

Coloring is easy

SSA separates spilling from coalescing
=⇒ Simplifies engineering

Both remain hard and challenging

Spilling can be more sensitive to program
=⇒ no additional spills due to failed coloring

Coalescing never violates the coloring

We never insert a spill/reload in favor of a saved copy

Everything implemented within

http://www.libfirm.org

and is more than a proof of concept:
Our Quake server is compiled with libFirm ;)

Michael Beck will present libFirm on Thursday

Sebastian Hack SSA Register Allocator 34 / 35

http://www.libfirm.org

computer science

saarland
universityConclusions

Coloring is easy

SSA separates spilling from coalescing
=⇒ Simplifies engineering

Both remain hard and challenging

Spilling can be more sensitive to program
=⇒ no additional spills due to failed coloring

Coalescing never violates the coloring

We never insert a spill/reload in favor of a saved copy

Everything implemented within

http://www.libfirm.org

and is more than a proof of concept:
Our Quake server is compiled with libFirm ;)

Michael Beck will present libFirm on Thursday

Sebastian Hack SSA Register Allocator 34 / 35

http://www.libfirm.org

computer science

saarland
universityRuntime of the Algorithm

 1

 10

 100

 1000

 10000

 10 100 1000 10000

R
un

tim
e

(m
s)

#Nodes

c1 · x

c2 · x2

c · x1.2

Sebastian Hack SSA Register Allocator 35 / 35

	Foundations
	Interference Graphs
	Non-SSA Interference Graphs
	Perfect Elimination Orders
	Chordal Graphs
	Implementing -functions
	Intuition

	Register Constraints
	Register Constraints

	Spilling
	Linear Scan
	Our Approach
	Results

	Coalescing
	Recoloring

