Design of an SSA Register Allocator
SSA '09

Sebastian Hack

SAARLAND
UNIVERSITY
I —

COMPUTER SCIENCE

SAARLAND
UNIVERSITY
N E—
COMPUTER SCIENCE

Part |

Foundations

Sebastian Hack SSA Register Allocator

Non-SSA Interference Graphs

An inconvenient property

Program
a«—1
d«—1 be—ata
e atl c—a+1
e—b+1
—d
—C

_/

SAARLAND
UNIVERSITY
N E—

COMPUTER SCIENCE

(]

Interference Graph

b

m The number of live variables at each instruction (register pressure) is 2

m However, we need 3 registers for a correct register allocation

m This gap can be arbitrarily large

Sebastian Hack SSA Register Allocator 3/35

SAARLAND
UNIVERSITY

Graph-Coloring Register Allocation —
[Chaitin '80, Briggs '92, Appel & George '96, Park & Moon '04] e

program changed -
l coloring heuristic failed
——[Buitd 16}~ Coslesce}~

Every undirected graph can occur as an interference graph
—> Finding a k-coloring is NP-complete

Color using heuristic
— Iteration necessary

m Might introduce spills although 1G is k-colorable
Rebuilding the IG each iteration is costly

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY

Graph-Coloring Register Allocation —
[Chaitin '80, Briggs '92, Appel & George '96, Park & Moon '04] e

program changed -
l coloring heuristic failed
——[Buitd 16}~ Coslesce}~

m Spill-code insertion is crucial for the program’s performance
m Hence, it should be very sensitive to the structure of the program

» Place load and stores carefully

» Avoid spilling in loops!

m Here, it is merely a fail-safe for coloring

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY

Coloring —
COMPUTER SCIENCE

m Subsequently remove the nodes from the graph

elimination order

Sebastian Hack SSA Register Allocator

Coloring

m Subsequently remove the nodes from the graph

elimination order

d,

SAARLAND
UNIVERSITY
N E—
COMPUTER SCIENCE

Sebastian Hack

SSA Register Allocator

SAARLAND
UNIVERSITY

Coloring —
COMPUTER SCIENCE

m Subsequently remove the nodes from the graph

elimination order
d, e

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY

Coloring —
COMPUTER SCIENCE

m Subsequently remove the nodes from the graph

elimination order
d, e c

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY

Coloring —
COMPUTER SCIENCE

m Subsequently remove the nodes from the graph

elimination order
d, e ¢ a,

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY

Coloring —
COMPUTER SCIENCE

m Subsequently remove the nodes from the graph

elimination order
d e c a b

Sebastian Hack SSA Register Allocator

. SAARLAND g
COlOI'Ing UNIVERSITY

COMPUTER SCIENCE

m Subsequently remove the nodes from the graph
m Re-insert the nodes in reverse order

m Assign each node the next possible color

elimination order
d e c a b

Sebastian Hack SSA Register Allocator 5/ 35

SAARLAND I
N UNIVERSITY B
Coloring —

COMPUTER SCIENCE

m Subsequently remove the nodes from the graph
m Re-insert the nodes in reverse order

m Assign each node the next possible color

d e
elimination order
d, e ¢ a,

Sebastian Hack SSA Register Allocator 5/ 35

Coloring

m Subsequently remove the nodes from the graph
m Re-insert the nodes in reverse order

m Assign each node the next possible color

elimination order

d, e c

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY B
N E—

COMPUTER SCIENCE

5/35

Coloring

m Subsequently remove the nodes from the graph
m Re-insert the nodes in reverse order

m Assign each node the next possible color

elimination order

d, e,

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY B
N E—

COMPUTER SCIENCE

5/35

. SAARLAND g
COlOI'Ing UNIVERSITY

COMPUTER SCIENCE

m Subsequently remove the nodes from the graph
m Re-insert the nodes in reverse order

m Assign each node the next possible color

elimination order
d,

Sebastian Hack SSA Register Allocator 5/ 35

Coloring

m Subsequently remove the nodes from the graph
m Re-insert the nodes in reverse order

m Assign each node the next possible color

elimination order

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY B
N E—

COMPUTER SCIENCE

5/35

SAARLAND
N UNIVERSITY
Coloring —

COMPUTER SCIENCE

(]

m Subsequently remove the nodes from the graph
m Re-insert the nodes in reverse order

m Assign each node the next possible color

elimination order

But. ..

this graph is 3-colorable. We obviously picked a wrong order.

Sebastian Hack SSA Register Allocator 5/ 35

SAARLAND
N UNIVERSITY
Coloring —

COMPUTER SCIENCE

(]

m Subsequently remove the nodes from the graph
m Re-insert the nodes in reverse order

m Assign each node the next possible color

elimination order

But. ..

this graph is 3-colorable. We obviously picked a wrong order.

Sebastian Hack SSA Register Allocator 5/ 35

. SAARLAND
COlOI'Ing UNIVERSITY

COMPUTER SCIENCE
PEOs

(]

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order

Sebastian Hack SSA Register Allocator 6 /35

. SAARLAND
COlOI'Ing UNIVERSITY

COMPUTER SCIENCE
PEOs

(]

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order

a,

Sebastian Hack SSA Register Allocator 6 /35

. SAARLAND
COlOI'Ing UNIVERSITY

COMPUTER SCIENCE
PEOs

(]

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order

al CI

Sebastian Hack SSA Register Allocator 6 /35

SAARLAND
UNIVERSITY

g COMPUTER SCIENCE
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order
a, ¢ d,

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY

Coloring Dniversiry
PEOS COMPUTER SCIENCE
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e
elimination order

a, cd, e,

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY

g COMPUTER SCIENCE
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order
a,c,d, e b

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY

Coloring Dniversiry
PEOS COMPUTER SCIENCE
Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

d e
elimination order

a, ¢ d, e

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY

g COMPUTER SCIENCE
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order
a, ¢ d,

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY

g COMPUTER SCIENCE
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order
al CY

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY

g COMPUTER SCIENCE
PEOs

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order
ay

Sebastian Hack SSA Register Allocator

SAARLAND
N UNIVERSITY
Coloring —

COMPUTER SCIENCE
PEOs

(]

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

elimination order

Sebastian Hack SSA Register Allocator 6 /35

SAARLAND
N UNIVERSITY
Coloring —

COMPUTER SCIENCE
PEOs

]

Perfect Elimination Order (PEO)

All not yet eliminated neighbors of a node are mutually connected

M elimination order

From Graph Theory [Berge '60, Fulkerson/Gross '65, Gavril '72]

m A PEO allows for an optimal coloring in k x |V/|

m The number of colors is bound by the size of the largest clique

Sebastian Hack SSA Register Allocator 6 /35

SAARLAND
UNIVERSITY

g COMPUTER SCIENCE
PEOs

m Graphs with holes larger than 3 have no PEO, e.g.

m Graphs with PEOs are called chordal

Sebastian Hack SSA Register Allocator

SAARLAND
N UNIVERSITY
Coloring —

COMPUTER SCIENCE
PEOs

]

m Graphs with holes larger than 3 have no PEO, e.g.

<>

m Graphs with PEOs are called chordal

Core Theorem of SSA Register Allocation
[Brisk; Bouchez, Darte, Rastello; Hack, around 2005]

m The dominance relation in SSA programs induces a PEO in the IG
m Thus, SSA IGs are chordal

Sebastian Hack SSA Register Allocator 7 /35

. . . SAARLAND
Properties of SSA Register Allocation e

COMPUTER SCIENCE

]

m Before a value v is added to a PEO,
add all values whose definitions are dominated by v

m A post order walk of the dominance tree defines a PEO

A pre order walk of the dominance tree yields a coloring sequence

m IGs of SSA-form programs can be colored optimally in O(k - |V/|)
m Without constructing the interference graph itself
m Number of needed registers is exactly determined by register pressure

After lowering the pressure, no additional spills will be introduced

Sebastian Hack SSA Register Allocator 8 /35

SAARLAND

Properties of SSA Register Allocation —_

COMPUTER SCIENCE

]

m Before a value v is added to a PEO,
add all values whose definitions are dominated by v

m A post order walk of the dominance tree defines a PEO

A pre order walk of the dominance tree yields a coloring sequence

m IGs of SSA-form programs can be colored optimally in O(k - |V/|)
m Without constructing the interference graph itself
m Number of needed registers is exactly determined by register pressure

After lowering the pressure, no additional spills will be introduced

But ...
What about the ¢-functions?

Sebastian Hack SSA Register Allocator 8 /35

SAARLAND
UNIVERSITY

COMPUTER SCIENCE

m Consider following example

71— ¢(x1, 1)
7y « ¢(x2, y2)
73— ¢(x3,y3)

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY

COMPUTER SCIENCE

m Consider following example

(21,22, z3) « (x1, %2, %3) (21,22, 23) < (y1,¥2,¥3)
— (1, 1)
— ¢,)
— o0,)

m ®-functions are parallel copies on control flow edges

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY

COMPUTER SCIENCE

m Consider following example

(21,22, z3) = (x1, %2, %3) (21,22, 23) < (y1,¥2,13)
— (1,)
— ¢, 0)
—o(,)

m ®-functions are parallel copies on control flow edges

m Considering assigned registers . ..

Sebastian Hack SSA Register Allocator

SAARLAND iy
UNIVERSITY Bl

COMPUTER SCIENCE

m Consider following example

m d-functions are parallel copies on control flow edges

m Considering assigned registers . ..

m ... ®s represent register permutations

Sebastian Hack SSA Register Allocator 9 /35

Intuition: Why are SSA IGs chordal?

Straight-line code

Program
g .-
b .-
€ -
d—a+b
e—c+1

m How can we create a 4-cycle {a,c,d,e}?

Sebastian Hack SSA Register Allocator

Live Ranges

a

b

SAARLAND i
UNIVERSITY B4
I —

COMPUTER SCIENCE

Interference Graph

10 / 35

Intuition: Why are SSA IGs chordal?
Straight-line code

Program Live Ranges

IR a

he... b

Cevn- c

d—a+b d

e«—c+1 e

Q— - a

m How can we create a 4-cycle {a,c,d,e}?

m Redefine a = SSA violated!

Sebastian Hack SSA Register Allocator

SAARLAND i
UNIVERSITY B4
I —

COMPUTER SCIENCE

Interference Graph

10 / 35

SAARLAND

Intuition: ¢-functions break cycles in the I1G)

Program and live ranges

de---
e<_a+...
—d

be...
C<_a+...
e—b

«~— C

Sebastian Hack

SSA Register Allocator

COMPUTER SCIENCE

Interference Graph

d

SAARLAND
UNIVERSITY

Intuition: ¢-functions break cycles in the I1G —l

COMPUTER SCIENCE

Program and live ranges

Interference Graph
de .- b
e +—a+--- | | Ce—at-- d e
d | e« b a
— | .
\ / "
b
Ie3<_¢(el7e2) C €

Sebastian Hack SSA Register Allocator

SAARLAND

Intuition: Why Parallel Copies are Good —_
COMPUTER SCIENCE
Parallel copies Sequential copies
d«—d
/ / / / C/ —c
(a',b,c',d") — (a,b,c,d) b — b
a «—a

Sebastian Hack SSA Register Allocator

. . SAARLAND
Intuition: Why Parallel Copies are Good —_

COMPUTER SCIENCE

Parallel copies Sequential copies
d«—d
/ / / / C/ —c
(a',b,c',d") — (a,b,c,d) b — b
a «—a
abcd abcd
abv'cd ab'cd

Sebastian Hack SSA Register Allocator

Intuition: Why Parallel Copies are Good

SAARLAND oo
UNIVERSITY B
I —

COMPUTER SCIENCE

Parallel copies Sequential copies

d —d

/ / / / C/ —c

(a',b,c',d") — (a,b,c,d) b — b

a «—a
abcd abcd
abv'cdd abcdd

Sebastian Hack SSA Register Allocator 12 /35

SAARLAND
UNIVERSITY

Summary so far —

COMPUTER SCIENCE

IGs of SSA-form programs are chordal

The dominance relation induces a PEO

m Architecture without iteration
—{(Sil)~ (@-tmpl.}—

Register assignment optimal in linear time

m Do not need to construct interference graph

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY
N E—
COMPUTER SCIENCE

Part 1l

Register Constraints

Sebastian Hack SSA Register Allocator

1 : . SAARLAND gy
Handling of Register Constraints —

COMPUTER SCIENCE

m Certain instructions require operand to reside in special register

m Instruction set architecture (ISA), e.g.:
Shift count must be in c1 on x86

m Calling conventions, e.g.:
First integer argument of function in R3 on PPC/Linux

m Caller-/Callee-save registers within a function

Sebastian Hack SSA Register Allocator 15 / 35

. . SAARLAND i
Usual way of handling constraints e

COMPUTER SCIENCE

m Registers are like variables
IR: in the lower IR

-+ call foo ty, ty, t3 m Multiple assignments
possible (breaks SSA!)

Has poor engineering

Lower IR: properties:
ce m Always special case in the
mov R3, ti1 code
mov R4, t2)]
mov R5. t3 m Does R3 interfere with
’ ?
call foo Tl

m How long can a reg live
range be?

Sebastian Hack SSA Register Allocator 16 / 35

SAARLAND
Even worse UNIVERSITY

— —
COMPUTER SCIENCE

]

Theorem [Marx '05]

If a chordal graph contains two nodes precolored to the same color,
coloring is NP-complete

Solution:

m Split all live ranges in front of the constrained instruction

Separates graph into two components

Annotate the constraints at the instruction

m Let the coloring algorithm fulfill the constraints

Basically pushes the problem to the coalescer

Sebastian Hack SSA Register Allocator 17 / 35

SAARLAND

Example et
COMPUTER SCIENCE
Before:
g — .-
< callgpuy foo (b, c,d)
—a
After:
g — -

(a/’ bl’ Cl? dl) — (a7 b’ C’ d)
— callgggm foo (b',c’,d")

Sebastian Hack SSA Register Allocator

SAARLAND i
Caller—/CaIIee—Save UNIVERSITY B

COMPUTER SCIENCE

m Can be modelled by normal register constraints

m Callee-Save registers are implicit parameters to a function
m Caller-Save registers are implicit results of a function

m Insert dummy SSA variables for these parameters

The spiller will (transparently) do the rest

(C1, C2)- «— start

(rl, rg)- «— callgpmm fOO(b, c, d)
dummy use(ry, 1)

- endggy(c1, ¢2)

Sebastian Hack SSA Register Allocator 19 / 35

SAARLAND
UNIVERSITY
N E—
COMPUTER SCIENCE

Part Il

Spilling

Sebastian Hack SSA Register Allocator

Spilling

SSA-Form Register Allocation

m Spilling is not dependent on the coloring algorithm
m Do not spill nodes in an interference graph

m To color optimally:

Reduce register pressure to number of available registers

SAARLAND
UNIVERSITY
N E—

COMPUTER SCIENCE

Sl

m Can insert store and load instructions sensitively to the program'’s

structure

Most important:
» Pull reloads in front loops

» Push stores behind loops

m Revisit Belady's algorithm

Sebastian Hack SSA Register Allocator

21 /35

SAARLAND ohg
Linear Scan UNIVERSITY B

— —
COMPUTER SCIENCE

Linearizations

— v v
e s s| =7 S| X
i 41 ¢ 41
L / \ Hy— oY Hloo
—y — X : :
: “x v
H L .
N
E E : E
Example CFG = x spilled m y spilled
m Bad: m Good: No
Reload in reload in
loop loop

Sebastian Hack SSA Register Allocator 22 /35

Linear Scan

Linearizations

y —
X S

41
L / \H¢—
—y «— X

an=

E

Example CFG

H

E

y(—

X

1

-y

Linearization

SAARLAND phéa
UNIVERSITY B4
I —

COMPUTER SCIENCE

m Register occupation at entry
of H is given by exit of L!

m However, there is no
control-flow between both

m Example last slide:
» Linearization dictates reloads
» Might unnecessarily reload in

loops!

m Why do we linearize at all?

Sebastian Hack SSA Register Allocator 23 /35

SAARLAND s

Belady on CFGs UNIVERS TV

COMPUTER SCIENCE
m Belady evicts the variable whose next use is farthest in the future
m Good because frees register for the longest possible time
m On straight-line code minimum number of replacements
Our goals:
m Extend Belady to CFGs
m Try to emulate Belady on each trace as good as possible

m Keep it simple: Apply Belady to each basic block once

m Where can we tweak?
» Next-use distance

» Occupation of the registers at entry of each block

Sebastian Hack SSA Register Allocator 24 / 35

SAARLAND s

Belady on Traces UNIVERSITY

— —
COMPUTER SCIENCE

g
x—-|g
. v — m One of x,y has to be
e S| X spilled at the end of S
L/ \\B 41
“x . m Use of y is farther away
) éOI — X
1: . .
4 . H] — S m We cannot know this by
—x X only looking at S
: -y
l = m Conclusion:
/ Need global next-uses
A= distances!
— X

Sebastian Hack SSA Register Allocator 25/ 35

SAARLAND
Belady on Traces —_

COMPUTER SCIENCE

g
x| g m Consider E
410 o .
B X is in a register on both
L/ \ B : :
incoming branches
- 40 _ _
41 Hl m We can assume it to be in
—x { registers on the entry of E
— X
. m Conclusion:
/ L | Processing predecessors
—y first makes register
—x |E occupation available

Sebastian Hack SSA Register Allocator 25 /35

Belady on Traces

S
xe - |g
41
L/ \ B
fx 40"
élf_x H
«— X
/ . |
Cy |E

Sebastian Hack

y(—
S| *<

41
B 40

«— X
H

«— X
H

«— X
H
el °7

«— X

SSA Register Allocator

SAARLAND
UNIVERSITY
N E—

COMPUTER SCIENCE

il

m Neither x nor y can
“survive” B

m x is reloaded in first
execution of H

m Can be used from a
register ever after

m Conclusion:
Provide “loop workset” at
loop entrances

25 / 35

SAARLAND

Our Approach hiveiiry B
[Braun & Hack, CC’OQ] COMPUTER SCIENCE

m Apply furthest-first algorithm to each block in the CFG once
m Do not flatten the CFG

Algorithm

Compute global next uses (entails liveness!)
For each block B in reverse post order of the CFG:

Determine initialization of register set sensitive to CF predecessors
Insert coupling code at the block entry
Perform Belady’s algorithm on B

Reconstruct SSA

Sebastian Hack SSA Register Allocator 26 / 35

SSA Reconstruction

X0 <

«— spill xg

Xg < reload
«— XO

« spill xq

X1 <— reload
«— Xl

< X0 < X0

SAARLAND
UNIVERSITY
N E—

COMPUTER SCIENCE

Sl

XQ <

«— spill xo

X1 < reload

— X1

/

x2 — ¢(x0,x1)

- — Xp

m Inserting reloads for variables creates additional definitions

m Violates SSA

m Thus, SSA has to be reconstructed after spilling

m Use algorithm by [Sastry & Ju PLDI'97]

Sebastian Hack

SSA Register Allocator

27 /35

SAARLAND
UNIVERSITY
Results ——rr

COMPUTER SCIENCE

m Implemented in our x86 research compiler libFirm
m Features SSA-based register allocator
m Ran CINT2000 benchmark

m Compare against Chaitin/Briggs graph-coloring allocator (GC)
LLVM's linear scan (LS)

Quality Compilation Speed
Reduction of executed spills _ 3 L [
and reloads against: B -
g 2 W
F 15 e
’ ‘ GC ‘ LS ‘ E 10
Reloads | 58.2% | 54.5% . ; L
. 0 200 400 600 800 1000 1200 1400
Sp|||s 4_]_9% 61 5% Number of Instructions

Average throughput:

430 insns per msec
(2GHz Core 2 Duo)

Sebastian Hack SSA Register Allocator 28 / 35

SAARLAND
UNIVERSITY
N E—
COMPUTER SCIENCE

Part IV

Coalescing

Sebastian Hack SSA Register Allocator

Coalescing
[Hack & Goos, PLDI'08]

Do not modify the graph
Modify the coloring!
Try to assign copy-related nodes the same color

Introduce cost function for colorings
— Sum of all weights of unfulfilled affinities

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY
N E—

COMPUTER SCIENCE

(]

30/ 35

SAARLAND
UNIVERSITY

Coalescing —_—
[Hack & GOOS’ PLDI'O8] COMPUTER SCIENCE

m Do not modify the graph

(]

m Modify the coloring!
m Try to assign copy-related nodes the same color

m Introduce cost function for colorings
— Sum of all weights of unfulfilled affinities

Initial coloring (cost: 6)

Sebastian Hack SSA Register Allocator 30/ 35

SAARLAND
UNIVERSITY

Coalescing —_—
[Hack & GOOS’ PLDI'O8] COMPUTER SCIENCE

m Do not modify the graph

]

m Modify the coloring!
m Try to assign copy-related nodes the same color

m Introduce cost function for colorings
— Sum of all weights of unfulfilled affinities

Initial coloring (cost: 6) Better coloring (cost: 1)

Sebastian Hack SSA Register Allocator 30/ 35

Coalescing
[Hack & Goos, PLDI'08]

Do not modify the graph

Modify the coloring!

Try to assign copy-related nodes the same color

Introduce cost function for colorings

= Sum of all weights of unfulfilled affinities

Coalesce after coloring

(5ol —[Contesce}~

SAARLAND
UNIVERSITY
N E—
COMPUTER SCIENCE

Sebastian Hack

SSA Register Allocator

. SAARLAND
Recoloring UNIVERSITY

COMPUTER SCIENCE

(]

m Optimistically try to assign move-related nodes the same color

m Resolve color clashes recursively through the graph

Sebastian Hack SSA Register Allocator 31/35

. SAARLAND
Recoloring UNIVERSITY

COMPUTER SCIENCE

(]

m Optimistically try to assign move-related nodes the same color

m Resolve color clashes recursively through the graph

Sebastian Hack SSA Register Allocator 31/35

SAARLAND
UNIVERSITY

Recolorin ——rr
g COMPUTER SCIENCE

m Optimistically try to assign move-related nodes the same color

m Resolve color clashes recursively through the graph

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY

Recolorin ——rr
g COMPUTER SCIENCE

m Optimistically try to assign move-related nodes the same color

m Resolve color clashes recursively through the graph

Sebastian Hack SSA Register Allocator

. SAARLAND
Recoloring UNIVERSITY

COMPUTER SCIENCE

(]

m Optimistically try to assign move-related nodes the same color

m Resolve color clashes recursively through the graph

Sebastian Hack SSA Register Allocator 31/35

. SAARLAND
Recoloring UNIVERSITY

COMPUTER SCIENCE

(]

m Optimistically try to assign move-related nodes the same color

m Resolve color clashes recursively through the graph

Sebastian Hack SSA Register Allocator 31/35

SAARLAND
UNIVERSITY

Recolorin ——rr
g COMPUTER SCIENCE

m Optimistically try to assign move-related nodes the same color

m Resolve color clashes recursively through the graph

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY

Recolorin ——rr
g COMPUTER SCIENCE

m Optimistically try to assign move-related nodes the same color

m Resolve color clashes recursively through the graph

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY

Recolorin ——rr
g COMPUTER SCIENCE

m Optimistically try to assign move-related nodes the same color

m Resolve color clashes recursively through the graph

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY

Recolorin ——rr
g COMPUTER SCIENCE

m Optimistically try to assign move-related nodes the same color

m Resolve color clashes recursively through the graph

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY

Recolorin ——rr
g COMPUTER SCIENCE

m Optimistically try to assign move-related nodes the same color

m Resolve color clashes recursively through the graph

Sebastian Hack SSA Register Allocator

SAARLAND
UNIVERSITY

Quality of the Results e
COMPUTER SCIENCE

Ratio

0.14
0.14

164 175 176 181 186 197 253 254 255 256 Bench
m Heur m ILP
geomean Heur: 0.084, geomean ILP: 0.067

Sum of weights of unfulfilled affinities after optimization relative to unoptimized

Sebastian Hack SSA Register Allocator

SAARLAND oo
UNIVERSITY BE4!

Comparison to existing techniques —_—

COMPUTER SCIENCE

m Conservative Coalescing
» Best known conservative coalescing technique

» Costs left over by IRC were reduced by 22.5%
» Number of copies left over by IRC reduced by 44.3%

m Aggressive/Optimistic Coalescing
» Did not compare to aggressive coalescing algorithms

» May spill = different problem

Sebastian Hack SSA Register Allocator 33 /35

SAARLAND
UNIVERSITY

Conclusions e

COMPUTER SCIENCE

(]

m Coloring is easy

m SSA separates spilling from coalescing
= Simplifies engineering

m Both remain hard and challenging

Spilling can be more sensitive to program
= no additional spills due to failed coloring

Coalescing never violates the coloring

m We never insert a spill/reload in favor of a saved copy

Sebastian Hack SSA Register Allocator 34 /35

http://www.libfirm.org

SAARLAND ot
UNIVERSITY

Conclusions e

COMPUTER SCIENCE
m Coloring is easy

m SSA separates spilling from coalescing
= Simplifies engineering

m Both remain hard and challenging

Spilling can be more sensitive to program
= no additional spills due to failed coloring

Coalescing never violates the coloring

m We never insert a spill/reload in favor of a saved copy

Everything implemented within
http://www.libfirm.org

and is more than a proof of concept:
Our Quake server is compiled with libFirm ;)

m Michael Beck will present libFirm on Thursday

Sebastian Hack SSA Register Allocator 34 /35

http://www.libfirm.org

SAARLAND pffa
i

Runtime of the Algorithm e
COMPUTER SCIENCE
10000
C - X1‘2 + 3
1000

Runtime (ms)
[
o
o

=
o
T

10 100 1000 10000
#Nodes

Sebastian Hack SSA Register Allocator 35 /35

	Foundations
	Interference Graphs
	Non-SSA Interference Graphs
	Perfect Elimination Orders
	Chordal Graphs
	Implementing -functions
	Intuition

	Register Constraints
	Register Constraints

	Spilling
	Linear Scan
	Our Approach
	Results

	Coalescing
	Recoloring

