
A Framework for the Derivation of WCET Analyses for
Multi-Core Processors

Michael Jacobs, Sebastian Hahn, Sebastian Hack

Department of Computer Science
Saarland University

July 7, 2016

computer science

saarland
university

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

E
C

R
T
S

*

 Artifact *
 A

E

http://compilers.cs.uni-saarland.de/people/jacobs
http://embedded.cs.uni-saarland.de/hahn.php
http://compilers.cs.uni-saarland.de/people/hack
http://www.cs.uni-saarland.de/

computer science

saarland
universityContext of Our Work

Timing verification
I Worst-case execution time (WCET) analysis
I Scheduling theory / response time analysis

Multi-core processors
I Shared resources: buses, caches, . . .
I Shared-resource interference

F Strong impact on performance
I Must be considered in timing verification

Scope of our work
I WCET analysis for multi-core processors
I Static analysis
I Non-probabilistic
I Not (yet) integrated with response time analysis

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 1 / 31

computer science

saarland
universityContext of Our Work

Timing verification
I Worst-case execution time (WCET) analysis
I Scheduling theory / response time analysis

Multi-core processors
I Shared resources: buses, caches, . . .
I Shared-resource interference

F Strong impact on performance
I Must be considered in timing verification

Scope of our work
I WCET analysis for multi-core processors
I Static analysis
I Non-probabilistic
I Not (yet) integrated with response time analysis

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 1 / 31

computer science

saarland
universityContext of Our Work

Timing verification
I Worst-case execution time (WCET) analysis
I Scheduling theory / response time analysis

Multi-core processors
I Shared resources: buses, caches, . . .
I Shared-resource interference

F Strong impact on performance
I Must be considered in timing verification

Scope of our work
I WCET analysis for multi-core processors
I Static analysis
I Non-probabilistic
I Not (yet) integrated with response time analysis

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 1 / 31

computer science

saarland
university

Motivation

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 2 / 31

computer science

saarland
universityExisting Work

WCET Analysis and Response Time Analysis for Multi-Core Processors

[Kelter and Marwedel, 2014]

} enumeration of all interleavings

[Chattopadhyay et al., 2012]

[Schranzhofer et al., 2010]

[Schliecker et al., 2009]

[Schliecker and Ernst, 2010]

[Pellizzoni et al., 2010]

[Schranzhofer et al., 2011]

[Dasari et al., 2011]

[Giannopoulou et al., 2012]

[Liang et al., 2012]

[Dasari and Nélis, 2012]

[Nowotsch, 2014]

[Altmeyer et al., 2015]

}
only support TDMA bus arbitration

rely on compositionality

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 3 / 31

computer science

saarland
universityExisting Work

WCET Analysis and Response Time Analysis for Multi-Core Processors

[Kelter and Marwedel, 2014] } enumeration of all interleavings

[Chattopadhyay et al., 2012]

[Schranzhofer et al., 2010]

[Schliecker et al., 2009]

[Schliecker and Ernst, 2010]

[Pellizzoni et al., 2010]

[Schranzhofer et al., 2011]

[Dasari et al., 2011]

[Giannopoulou et al., 2012]

[Liang et al., 2012]

[Dasari and Nélis, 2012]

[Nowotsch, 2014]

[Altmeyer et al., 2015]

}
only support TDMA bus arbitration

rely on compositionality

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 3 / 31

computer science

saarland
universityExisting Work

WCET Analysis and Response Time Analysis for Multi-Core Processors

[Kelter and Marwedel, 2014] } enumeration of all interleavings

[Chattopadhyay et al., 2012]

[Schranzhofer et al., 2010]

[Schliecker et al., 2009]

[Schliecker and Ernst, 2010]

[Pellizzoni et al., 2010]

[Schranzhofer et al., 2011]

[Dasari et al., 2011]

[Giannopoulou et al., 2012]

[Liang et al., 2012]

[Dasari and Nélis, 2012]

[Nowotsch, 2014]

[Altmeyer et al., 2015]

}
only support TDMA bus arbitration



rely on compositionality

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 3 / 31

computer science

saarland
universityExisting Work

WCET Analysis and Response Time Analysis for Multi-Core Processors

[Kelter and Marwedel, 2014] } enumeration of all interleavings

[Chattopadhyay et al., 2012]

[Schranzhofer et al., 2010]

[Schliecker et al., 2009]

[Schliecker and Ernst, 2010]

[Pellizzoni et al., 2010]

[Schranzhofer et al., 2011]

[Dasari et al., 2011]

[Giannopoulou et al., 2012]

[Liang et al., 2012]

[Dasari and Nélis, 2012]

[Nowotsch, 2014]

[Altmeyer et al., 2015]

}
only support TDMA bus arbitration

rely on compositionality

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 3 / 31

computer science

saarland
universityMotivating Example

All 6 Behaviors of a Simple Toy Program:

= non-interfered execution

= direct interference effect
= indirect interference effect

I only as consequence of direct interference

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 4 / 31

computer science

saarland
universityMotivating Example

All 6 Behaviors of a Simple Toy Program:

= non-interfered execution

= direct interference effect

= indirect interference effect
I only as consequence of direct interference

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 4 / 31

computer science

saarland
universityMotivating Example

All 6 Behaviors of a Simple Toy Program:

= non-interfered execution

= direct interference effect
= indirect interference effect

I only as consequence of direct interference

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 4 / 31

computer science

saarland
universityClassical Compositional Timing Analysis

For our Example:

Typical compositional analysis

= 10 time units

Unsoundness

Underestimates WCET

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 5 / 31

computer science

saarland
universityClassical Compositional Timing Analysis

For our Example:

Typical compositional analysis
= 10 time units

Unsoundness

Underestimates WCET

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 5 / 31

computer science

saarland
universityClassical Compositional Timing Analysis

For our Example:

Typical compositional analysis
= 10 time units

Unsoundness

Underestimates WCET

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 5 / 31

computer science

saarland
universityIncreasing Penalty in Compositional Analysis

For our Example:

Compositional analysis

Add indirect effects to penalty
= 15 time units

Limitations

Imprecision

How to bound indirect effects per direct effect for a HW?

Not possible for HW with domino effects!

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 6 / 31

computer science

saarland
universityIncreasing Penalty in Compositional Analysis

For our Example:

Compositional analysis

Add indirect effects to penalty
= 15 time units

Limitations

Imprecision

How to bound indirect effects per direct effect for a HW?

Not possible for HW with domino effects!

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 6 / 31

computer science

saarland
universityIncreasing Penalty in Compositional Analysis

For our Example:

Compositional analysis

Add indirect effects to penalty
= 15 time units

Limitations

Imprecision

How to bound indirect effects per direct effect for a HW?

Not possible for HW with domino effects!

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 6 / 31

computer science

saarland
universityIncreasing Penalty in Compositional Analysis

For our Example:

Compositional analysis

Add indirect effects to penalty
= 15 time units

Limitations

Imprecision

How to bound indirect effects per direct effect for a HW?

Not possible for HW with domino effects!

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 6 / 31

computer science

saarland
universityIncreasing Penalty in Compositional Analysis

For our Example:

Compositional analysis

Add indirect effects to penalty
= 15 time units

Limitations

Imprecision

How to bound indirect effects per direct effect for a HW?

Not possible for HW with domino effects!

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 6 / 31

computer science

saarland
universityA Novel Analysis by Us

"WCET Analysis for Multi-Core Processors with
Shared Buses and Event-Driven Bus Arbitration"

at RTNS 2015 [Jacobs et al., 2015]

not compositional
I explicitly models interference in core pipeline

sound & precise

scalable
I octa-core processors
I out-of-order execution

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 7 / 31

computer science

saarland
universityA Novel Analysis by Us

"WCET Analysis for Multi-Core Processors with
Shared Buses and Event-Driven Bus Arbitration"

at RTNS 2015 [Jacobs et al., 2015]

not compositional
I explicitly models interference in core pipeline

sound & precise

scalable
I octa-core processors
I out-of-order execution

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 7 / 31

computer science

saarland
universityFocus of This Talk

Concepts
I used during derivation of [Jacobs et al., 2015]

Our Paper

embeds concepts in formal framework

rigorous soundness proofs

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 8 / 31

computer science

saarland
university

The Derivation of a WCET Analysis

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 9 / 31

computer science

saarland
universityConcrete-System Behavior

Set Traces of system behaviors

Traces

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 10 / 31

computer science

saarland
universityThe Actual WCET

Maximum execution time over all system behaviors

Traces

execution time

0

WCET

BCET

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 11 / 31

computer science

saarland
universityApproximation of System Behavior

Set T̂races of abstract traces

A t̂ ∈ T̂races describes (γtrace):
I system behaviors and/or
I spurious behaviors

Traces

T̂races

γtrace

t̂ ∈

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 12 / 31

computer science

saarland
universitySoundness of an Approximation

T̂races must overapproximate all system behaviors

Traces

T̂races

γtrace

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 13 / 31

computer science

saarland
universityTime Bounds per Abstract Trace

sound w.r.t. everything t̂ describes

Traces

execution time

0

UBtime(̂t)

LBtime(̂t)

γtrace

t̂

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 14 / 31

computer science

saarland
universityWCET Bound

max̂t∈T̂races
UBtime(̂t)

Traces

T̂races

γtrace

execution time

0

WCET Bound

BCET Bound

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 15 / 31

computer science

saarland
universityInfeasible Abstract Traces

Înfeas = {̂t | t̂ ∈ T̂races ∧ γtrace(̂t) ∩ Traces = ∅}

describe only spurious behavior

Traces

γtrace

t̂

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 16 / 31

computer science

saarland
universityImpact of Infeasible Abstract Traces

might dominate WCET bound

Traces

T̂races \ {̂t}
γtrace

execution time

0

WCET Bound without t̂
WCET Bound

γtrace

t̂

Goal: prune them
I How to detect them?

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 17 / 31

computer science

saarland
universityImpact of Infeasible Abstract Traces

might dominate WCET bound

Traces

T̂races \ {̂t}
γtrace

execution time

0

WCET Bound without t̂
WCET Bound

γtrace

t̂

Goal: prune them
I How to detect them?

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 17 / 31

computer science

saarland
universitySystem Property

Property P
I boolean predicate on execution behaviors

System property P
I holds for each system behavior

Traces

P

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 18 / 31

computer science

saarland
universitySystem Property

Property P
I boolean predicate on execution behaviors

System property P
I holds for each system behavior

Traces

P

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 18 / 31

computer science

saarland
universityLifted System Property

Property P̂
I boolean predicate on abstract traces

Criterion:

P

γtrace

t̂

⇒ P̂ (̂t)

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 19 / 31

computer science

saarland
universityLifted System Property

Property P̂
I boolean predicate on abstract traces

Criterion:

P

γtrace

t̂

⇒ P̂ (̂t)

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 19 / 31

computer science

saarland
universityDetect Infeasible Abstract Trace t̂

by ¬P̂ (̂t)

sound because of:

Traces

P

γtrace

t̂

¬P̂ (̂t)⇒

not necessarily complete

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 20 / 31

computer science

saarland
universityDetect Infeasible Abstract Trace t̂

by ¬P̂ (̂t)

sound because of:

Traces

P

γtrace

t̂

¬P̂ (̂t)⇒

not necessarily complete

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 20 / 31

computer science

saarland
universityDetect Infeasible Abstract Trace t̂

by ¬P̂ (̂t)

sound because of:

Traces

P

γtrace

t̂

¬P̂ (̂t)⇒

not necessarily complete

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 20 / 31

computer science

saarland
universityAnalysis Derivation Workflow

1 pessimistic baseline approximation

2 identify system properties

3 lift them to approximation

4 implement the analysis

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 21 / 31

computer science

saarland
universityAnalysis Derivation Workflow

1 pessimistic baseline approximation

2 identify system properties

3 lift them to approximation

4 implement the analysis

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 21 / 31

computer science

saarland
universityAnalysis Derivation Workflow

1 pessimistic baseline approximation

2 identify system properties

3 lift them to approximation

4 implement the analysis

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 21 / 31

computer science

saarland
universityAnalysis Derivation Workflow

1 pessimistic baseline approximation

2 identify system properties

3 lift them to approximation

4 implement the analysis

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 21 / 31

computer science

saarland
university

Property Lifting Examples

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 22 / 31

computer science

saarland
universityBounding Shared-Bus Delay

round-robin bus arbitration
I n-core processor

time

latacc latacc latacc. . .

≤ n − 1 times

Access
request

P(t) =
#blockedCi (t) ≤ (n − 1) · latacc ·#accessesCi (t)

P̂ (̂t) =
LB#blockedCi (̂t) ≤ (n − 1) · latacc · UB#accessesCi (̂t)

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 23 / 31

computer science

saarland
universityBounding Shared-Bus Delay

round-robin bus arbitration
I n-core processor

time

latacc latacc latacc. . .

≤ n − 1 times

Access
request

P(t) =
#blockedCi (t) ≤ (n − 1) · latacc ·#accessesCi (t)

P̂ (̂t) =
LB#blockedCi (̂t) ≤ (n − 1) · latacc · UB#accessesCi (̂t)

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 23 / 31

computer science

saarland
universityBounding Shared-Bus Delay

round-robin bus arbitration
I n-core processor

time

latacc latacc latacc. . .

≤ n − 1 times

Access
request

P(t) =
#blockedCi (t) ≤ (n − 1) · latacc ·#accessesCi (t)

P̂ (̂t) =
LB#blockedCi (̂t) ≤ (n − 1) · latacc · UB#accessesCi (̂t)

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 23 / 31

computer science

saarland
universityBounding Loop Iterations

loop bound BL for loop L
I back edge of L at most taken

BL times before L is left

P(t) =
#backEdgeL(t) ≤ BL ·#enteredL(t)

P̂ (̂t) =
LB#backEdgeL(̂t) ≤ BL · UB#enteredL(̂t)

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 24 / 31

L

enter L leave L

back edge ≤ BL

computer science

saarland
universityBounding Loop Iterations

loop bound BL for loop L
I back edge of L at most taken

BL times before L is left

P(t) =
#backEdgeL(t) ≤ BL ·#enteredL(t)

P̂ (̂t) =
LB#backEdgeL(̂t) ≤ BL · UB#enteredL(̂t)

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 24 / 31

L

enter L leave L

back edge ≤ BL

computer science

saarland
universityBounding Loop Iterations

loop bound BL for loop L
I back edge of L at most taken

BL times before L is left

P(t) =
#backEdgeL(t) ≤ BL ·#enteredL(t)

P̂ (̂t) =
LB#backEdgeL(̂t) ≤ BL · UB#enteredL(̂t)

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 24 / 31

L

enter L leave L

back edge ≤ BL

computer science

saarland
university

Experimental Evaluation

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 25 / 31

computer science

saarland
universityExperimental Setup

Hardware platforms
I ARM R© instruction set
I four processor-core configurations
I round-robin shared bus
I SRAM latency: 10 cycles
I dual-, quad-, and octa-core

Benchmarks
I 31 from Mälardalen suite
I 6 generated from SCADE models

Analysis
I co-runner-insensitive WCET bounds
I per benchmark
I per hardware configuration

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 26 / 31

computer science

saarland
universityExperimental Setup

Hardware platforms
I ARM R© instruction set
I four processor-core configurations
I round-robin shared bus
I SRAM latency: 10 cycles
I dual-, quad-, and octa-core

Benchmarks
I 31 from Mälardalen suite
I 6 generated from SCADE models

Analysis
I co-runner-insensitive WCET bounds
I per benchmark
I per hardware configuration

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 26 / 31

computer science

saarland
universityExperimental Setup

Hardware platforms
I ARM R© instruction set
I four processor-core configurations
I round-robin shared bus
I SRAM latency: 10 cycles
I dual-, quad-, and octa-core

Benchmarks
I 31 from Mälardalen suite
I 6 generated from SCADE models

Analysis
I co-runner-insensitive WCET bounds
I per benchmark
I per hardware configuration

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 26 / 31

computer science

saarland
universityAverage Analysis-Runtime Increase

Compared to Compositional Analysis

increasing complexity of processor cores

2-Core in-order
execution

out-of-order
execution

local
instruction
scratchpad

3.3% 5.4%

local
instruction

cache
5.0% 15.9%

increasing number of processor cores
I out-of-order execution, local instruction cache

2-Core 4-Core 8-Core
15.9% 15.2% 14.9%

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 27 / 31

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

E
C

R
T
S

*

 Artifact *
 A

E

computer science

saarland
universityAverage Analysis-Runtime Increase

Compared to Compositional Analysis

increasing complexity of processor cores

2-Core in-order
execution

out-of-order
execution

local
instruction
scratchpad

3.3% 5.4%

local
instruction

cache
5.0% 15.9%

increasing number of processor cores
I out-of-order execution, local instruction cache

2-Core 4-Core 8-Core
15.9% 15.2% 14.9%

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 27 / 31

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

E
C

R
T
S

*

 Artifact *
 A

E

computer science

saarland
university

What else is in the paper?

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 28 / 31

computer science

saarland
universityCo-Runner-Sensitive Analysis

In this talk
I co-runner-insensitive analysis

Goal
I co-runner-sensitive analysis
I e.g. under work-conserving bus arbitration

Challenge
I avoid enumerating all interleavings of access requests

In our paper: iterative overapproximation algorithm
I give up some precision
I keep analysis runtime manageable

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 29 / 31

computer science

saarland
universityCo-Runner-Sensitive Analysis

In this talk
I co-runner-insensitive analysis

Goal
I co-runner-sensitive analysis
I e.g. under work-conserving bus arbitration

Challenge
I avoid enumerating all interleavings of access requests

In our paper: iterative overapproximation algorithm
I give up some precision
I keep analysis runtime manageable

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 29 / 31

computer science

saarland
universityCo-Runner-Sensitive Analysis

In this talk
I co-runner-insensitive analysis

Goal
I co-runner-sensitive analysis
I e.g. under work-conserving bus arbitration

Challenge
I avoid enumerating all interleavings of access requests

In our paper: iterative overapproximation algorithm
I give up some precision
I keep analysis runtime manageable

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 29 / 31

computer science

saarland
universityCo-Runner-Sensitive Analysis

In this talk
I co-runner-insensitive analysis

Goal
I co-runner-sensitive analysis
I e.g. under work-conserving bus arbitration

Challenge
I avoid enumerating all interleavings of access requests

In our paper: iterative overapproximation algorithm
I give up some precision
I keep analysis runtime manageable

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 29 / 31

computer science

saarland
university

Summary

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 30 / 31

computer science

saarland
universitySummary

Formal framework
I sound
I modular
I applicable to any hardware

Results for prototype analysis
I scalability shown for

F octa-core processors
F non-trivial processor-core features

Future work
I shared caches
I more processor-core features
I integrate with response time analysis

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 31 / 31

computer science

saarland
universitySummary

Formal framework
I sound
I modular
I applicable to any hardware

Results for prototype analysis
I scalability shown for

F octa-core processors
F non-trivial processor-core features

Future work
I shared caches
I more processor-core features
I integrate with response time analysis

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 31 / 31

computer science

saarland
universitySummary

Formal framework
I sound
I modular
I applicable to any hardware

Results for prototype analysis
I scalability shown for

F octa-core processors
F non-trivial processor-core features

Future work
I shared caches
I more processor-core features
I integrate with response time analysis

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 31 / 31

computer science

saarland
universityReferences I

Altmeyer, S., Davis, R. I., Indrusiak, L. S., Maiza, C., Nélis, V., and Reineke, J. (2015).
A generic and compositional framework for multicore response time analysis.
In Proceedings of the 23rd International Conference on Real Time Networks and Systems, pages
129–138.

Chattopadhyay, S., Kee, C., Roychoudhury, A., Kelter, T., Marwedel, P., and Falk, H. (2012).
A unified WCET analysis framework for multi-core platforms.
In Proceedings of the 18th IEEE Real-Time and Embedded Technology and Applications Symposium,
pages 99–108.

Dasari, D., Andersson, B., Nélis, V., Petters, S. M., Easwaran, A., and Lee, J. (2011).
Response time analysis of COTS-based multicores considering the contention on the shared memory
bus.
In Proceedings of the 10th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications, pages 1068–1075.

Dasari, D. and Nélis, V. (2012).
An analysis of the impact of bus contention on the WCET in multicores.
In Proceedings of the 14th IEEE International Conference on High Performance Computing and
Communication & the 9th IEEE International Conference on Embedded Software and Systems,
pages 1450–1457.

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 32 / 31

computer science

saarland
universityReferences II

Giannopoulou, G., Lampka, K., Stoimenov, N., and Thiele, L. (2012).
Timed model checking with abstractions: Towards worst-case response time analysis in
resource-sharing manycore systems.
In Proceedings of the 10th ACM International Conference on Embedded Software, pages 63–72.

Jacobs, M., Hahn, S., and Hack, S. (2015).
WCET analysis for multi-core processors with shared buses and event-driven bus arbitration.
In Proceedings of the 23rd International Conference on Real Time Networks and Systems, pages
193–202.

Kelter, T. and Marwedel, P. (2014).
Parallelism analysis: Precise WCET values for complex multi-core systems.
In Revised Selected Papers of the 3rd International Workshop on Formal Techniques for
Safety-Critical Systems, pages 142–158.

Liang, Y., Ding, H., Mitra, T., Roychoudhury, A., Li, Y., and Suhendra, V. (2012).
Timing analysis of concurrent programs running on shared cache multi-cores.
Real-Time Systems, 48:638–680.

Nowotsch, J. (2014).
Interference-sensitive Worst-case Execution Time Analysis for Multi-core Processors.
PhD thesis.

Pellizzoni, R., Schranzhofer, A., Chen, J.-J., Caccamo, M., and Thiele, L. (2010).
Worst case delay analysis for memory interference in multicore systems.
In Proceedings of the 13th Conference on Design, Automation and Test in Europe, pages 741–746.

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 33 / 31

computer science

saarland
universityReferences III

Schliecker, S. and Ernst, R. (2010).
Real-time performance analysis of multiprocessor systems with shared memory.
ACM Trans. Embedded Comput. Syst., 10(2):22.

Schliecker, S., Negrean, M., and Ernst, R. (2009).
Response time analysis in multicore ECUs with shared resources.
IEEE Trans. Industrial Informatics, 5(4):402–413.

Schranzhofer, A., Chen, J.-J., and Thiele, L. (2010).
Timing analysis for TDMA arbitration in resource sharing systems.
In Proceedings of the 16th IEEE Real-Time and Embedded Technology and Applications Symposium,
pages 215–224.

Schranzhofer, A., Pellizzoni, R., Chen, J.-J., Thiele, L., and Caccamo, M. (2011).
Timing analysis for resource access interference on adaptive resource arbiters.
In Proceedings of the 17th IEEE Real-Time and Embedded Technology and Applications Symposium,
pages 213–222.

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 34 / 31

computer science

saarland
universityWhat Is an Abstract Trace?

sequence of abstract states in micro-architectural analysis

path through abstract graph representation

ILP valuation in implicit path enumeration
I lifted property implemented by constraints

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 35 / 31

computer science

saarland
universityWhat Is an Abstract Trace?

sequence of abstract states in micro-architectural analysis

path through abstract graph representation

ILP valuation in implicit path enumeration
I lifted property implemented by constraints

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 35 / 31

computer science

saarland
universityWhat Is an Abstract Trace?

sequence of abstract states in micro-architectural analysis

path through abstract graph representation

ILP valuation in implicit path enumeration
I lifted property implemented by constraints

Michael Jacobs WCET Analyses for Multi-Core Processors July 7, 2016 35 / 31

	Introduction
	Motivation
	The Derivation of a WCET Analysis
	Property Lifting Examples
	Experimental Evaluation
	What else is in the paper?
	Summary

