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saarland
universityContext of Our Work

Timing verification
I Worst-case execution time (WCET) analysis
I Scheduling theory / response time analysis

Multi-core processors
I Shared resources: buses, caches, . . .
I Shared-resource interference

F Strong impact on performance
I Must be considered in timing verification

Scope of our work
I WCET analysis for multi-core processors
I Static analysis
I Non-probabilistic
I Not (yet) integrated with response time analysis
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WCET Analysis and Response Time Analysis for Multi-Core Processors

[Kelter and Marwedel, 2014]

} enumeration of all interleavings

[Chattopadhyay et al., 2012]

[Schranzhofer et al., 2010]

[Schliecker et al., 2009]

[Schliecker and Ernst, 2010]

[Pellizzoni et al., 2010]

[Schranzhofer et al., 2011]

[Dasari et al., 2011]

[Giannopoulou et al., 2012]

[Liang et al., 2012]

[Dasari and Nélis, 2012]

[Nowotsch, 2014]

[Altmeyer et al., 2015]

}
only support TDMA bus arbitration

rely on compositionality
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For our Example:

Compositional analysis

Add indirect effects to penalty
= 15 time units

Limitations

Imprecision

How to bound indirect effects per direct effect for a HW?

Not possible for HW with domino effects!
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"WCET Analysis for Multi-Core Processors with
Shared Buses and Event-Driven Bus Arbitration"

at RTNS 2015 [Jacobs et al., 2015]

not compositional
I explicitly models interference in core pipeline

sound & precise

scalable
I octa-core processors
I out-of-order execution
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Concepts
I used during derivation of [Jacobs et al., 2015]

Our Paper

embeds concepts in formal framework

rigorous soundness proofs
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The Derivation of a WCET Analysis
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Set Traces of system behaviors

Traces
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Maximum execution time over all system behaviors

Traces

execution time

0

WCET

BCET
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Set T̂races of abstract traces

A t̂ ∈ T̂races describes (γtrace):
I system behaviors and/or
I spurious behaviors

Traces

T̂races

γtrace

t̂ ∈
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T̂races must overapproximate all system behaviors

Traces

T̂races

γtrace
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sound w.r.t. everything t̂ describes

Traces

execution time

0

UBtime(̂t)

LBtime(̂t)

γtrace

t̂
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max̂t∈T̂races
UBtime(̂t)

Traces

T̂races

γtrace

execution time

0

WCET Bound

BCET Bound
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Înfeas = {̂t | t̂ ∈ T̂races ∧ γtrace(̂t) ∩ Traces = ∅}

describe only spurious behavior

Traces

γtrace

t̂
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might dominate WCET bound

Traces

T̂races \ {̂t}
γtrace

execution time

0

WCET Bound without t̂
WCET Bound

γtrace

t̂

Goal: prune them
I How to detect them?
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I holds for each system behavior

Traces

P
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Property P̂
I boolean predicate on abstract traces

Criterion:

P

γtrace

t̂

⇒ P̂ (̂t)
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by ¬P̂ (̂t)

sound because of:

Traces

P

γtrace

t̂

¬P̂ (̂t)⇒

not necessarily complete
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round-robin bus arbitration
I n-core processor

time

latacc latacc latacc. . .

≤ n − 1 times

Access
request

P(t) =
#blockedCi (t) ≤ (n − 1) · latacc ·#accessesCi (t)

P̂ (̂t) =
LB#blockedCi (̂t) ≤ (n − 1) · latacc · UB#accessesCi (̂t)
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loop bound BL for loop L
I back edge of L at most taken

BL times before L is left

P(t) =
#backEdgeL(t) ≤ BL ·#enteredL(t)

P̂ (̂t) =
LB#backEdgeL(̂t) ≤ BL · UB#enteredL(̂t)
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Hardware platforms
I ARM R© instruction set
I four processor-core configurations
I round-robin shared bus
I SRAM latency: 10 cycles
I dual-, quad-, and octa-core

Benchmarks
I 31 from Mälardalen suite
I 6 generated from SCADE models

Analysis
I co-runner-insensitive WCET bounds
I per benchmark
I per hardware configuration
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Compared to Compositional Analysis

increasing complexity of processor cores

2-Core in-order
execution

out-of-order
execution

local
instruction
scratchpad

3.3% 5.4%

local
instruction

cache
5.0% 15.9%

increasing number of processor cores
I out-of-order execution, local instruction cache

2-Core 4-Core 8-Core
15.9% 15.2% 14.9%
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In this talk
I co-runner-insensitive analysis

Goal
I co-runner-sensitive analysis
I e.g. under work-conserving bus arbitration

Challenge
I avoid enumerating all interleavings of access requests

In our paper: iterative overapproximation algorithm
I give up some precision
I keep analysis runtime manageable
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I sound
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I applicable to any hardware

Results for prototype analysis
I scalability shown for

F octa-core processors
F non-trivial processor-core features

Future work
I shared caches
I more processor-core features
I integrate with response time analysis
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